Мини Чат

vav: Ну вот, записался в диванные войска  :ae: 2022 May 13 00:39:18

aze1959: как то так 2022 Feb 13 13:48:06

HOOLIGAN-1105: Привет всем! :bq: 2022 Feb 09 19:09:23

Автор Тема: Интересные новости и факты (биология, химия)  (Прочитано 10306 раз)

ArefievPV

  • Новичок
  • *
  • Сообщений: 1183
  • Карма: 0
    • Просмотр профиля
Геронтологи подтвердили гипотезу о неизменной скорости старения людей
https://nplus1.ru/news/2021/06/18/invariant-rate-aging
Цитировать
Люди, как и другие приматы, стареют с фиксированной скоростью — к этому выводу пришла группа биологов, после того как они изучили таблицы смертности нескольких видов обезьян и нескольких человеческих популяций. Исследователи заметили, что, чем дольше живет вид, тем синхроннее умирают его представители — то есть продолжительность жизни движется к своему пределу. Замедлить это движение, по подсчетам ученых, можно, только влияя на скорость старения людей — но она оказалась самым консервативным из параметров смертности. Работа опубликована в журнале Nature Communications.
Цитировать
Таким образом, из модели, которую построили Альбертс с коллегами, следует два важных вывода. Первый состоит в том, что гипотеза инвариантной скорости старения, судя по всему, верна у приматов. Несмотря на то, что скорость роста смертности у взрослых особей немного колеблется в пределах рода, эти колебания сильно меньше, чем отличия во всех других параметрах смертности. То есть скорость старения — это самое консервативное свойство смертности у приматов, наименее склонное к изменениям.
Цитировать
Второй вывод состоит в том, что отодвинуть приближение к предельной продолжительности жизни можно в основном через скорость старения. Но она сложнее всего поддается изменению. До сих пор люди влияли на два других параметра: детскую смертность — благодаря борьбе с инфекциями — и общую фоновую смертность — благодаря развитию экстренной медицины и улучшению качества жизни. Но эти параметры не меняют скорость, с которой люди продолжают приближаться к предельной продолжительности жизни, а скорость старения человеческого организма осталась прежней. Ее изменить внешними вмешательствами, по мнению авторов работы, не получится — и только время покажет, заключают они, добьется ли медицина того, что не смогла эволюция.
P.S. Ссылки в дополнение:

Дело не в морщинах
https://nplus1.ru/material/2020/02/17/geroscience
Почему наука не знает, существует ли старость

Насквозь вижу
https://nplus1.ru/material/2020/09/18/young-inside
Молоды ли те, кто молодо выглядит?

ArefievPV

  • Новичок
  • *
  • Сообщений: 1183
  • Карма: 0
    • Просмотр профиля
У человека генетическая информация может идти в обратную сторону
https://www.nkj.ru/news/41616/
Цитировать
Фермент животных клеток способен копировать РНК в ДНК.

Генетическая информация у всех организмов записана в нуклеиновых кислотах в виде последовательности четырёх генетических букв – молекул нуклеотидов. В наших клетках главный носитель генетической информации – ДНК, дезоксирибонуклеиновая кислота. Но чтобы информация заработала, её нужно скопировать в РНК, рибонуклеиновую кислоту. С РНК могут работать молекулярные машины, которые синтезируют белки. Есть ещё ряд разновидностей РНК, которые работают сами по себе: входят в состав сложных молекулярных комплексов, помогают синтезировать белки, контролируют активность генов. Но и в случае с белками, и в случае с регуляторными РНК генетическая информация копируется из ДНК в РНК.

Какое-то время считалось, что информация движется только в одном направлении – из ДНК в РНК, и потом, если нужно, из РНК в белок. Это правило назвали основной догмой молекулярной биологии, и казалось, что исключений из него нет. Но потом оказалось, что на свете есть ретровирусы, у которых есть специальные белки, переносящие информацию с РНК на ДНК. Вообще ретровирусы принадлежат к огромной группе РНК-вирусов, у которых геном существует не в виде ДНК, а виде РНК. Собственно, коронавирусы – как раз одни из РНК-вирусов. Но у большинства таких вирусов на РНК просто синтезируются белки, сама РНК копируется в новые РНК, и никакого переноса информации в обратную сторону нет. А вот ретровирусы умеют это делать с помощью обратных транскриптаз. Если транскрипцией называют синтез РНК на ДНК-шаблоне, то обратной транскрипцией называют синтез ДНК на РНК-шаблоне. К ретровирусам относится, например, ВИЧ. Делая ДНК-копии своего генома, он способен встраиваться в клеточные хромосомы.

Из-за ретровирусов основную догму молекулярной пришлось подправить: информация между ДНК и РНК теперь двигалась в двух направлениях. Но кроме ретровирусов, казалось, на такой трюк больше никто не способен. Однако сотрудники Университета Томаса Джефферсона показали, что у человека и вообще у млекопитающих есть фермент, который может синтезировать ДНК на последовательности РНК. Сам фермент, собственно, и так был известен – это одна из четырнадцати ДНК-полимераз, которые синтезируют ДНК на ДНК. Они нужны для копирования генома перед клеточным делением и для исправления мутаций в ДНК. Исследователи обратили внимание на то, что одна из полимераз, тета-полимераза, в чём-то похожа на обратную транскриптазу ВИЧ. Оказалось, что тета-полимераза может синтезировать ДНК не только на другой ДНК, но и на РНК. Причём когда она копирует РНК в ДНК, она делает меньше ошибок, чем когда копирует ДНК в ДНК. То есть обратный перенос генетической информации, из РНК в ДНК, вполне возможен и у млекопитающих, благодаря их собственным ферментам. Результаты исследований опубликованы в Science Advances.

На самом деле у нас (и у других животных) есть ещё один фермент с похожей активностью – это небезызвестная теломераза. Её обычно вспоминают в связи с теломерами, концевыми участками хромосом, которые укорачиваются с каждым клеточным делением – потому что вышеупомянутые полимеразы, которые удваивают геном, не могут дочитать хромосомную ДНК до самого конца, часть последовательности хвоста-теломеры остаётся нескопированной. Длина теломер – один из признаков старения: когда теломеры становятся очень короткими, клетка уже не может делиться и погибает. Фермент теломераза же способен удлинять теломеры, правда, делает он это не во всех клетках, а только в стволовых (и в некоторых злокачественных). Чтобы удлинить теломерную ДНК, теломераза использует кусок РНК – то есть работает, как обратная транскриптаза. Только тот кусок РНК, с которым работает теломераза – особенный, и теломераза носит эту РНК везде с собой. Иными словами, теломераза не совсем похожа на настоящую обратную транскриптазу, потому что настоящая транскриптаза будет работать с любым РНК-шаблоном.

Исследователи, которые обнаружили «новую старую» обратную транскриптазу – тета-полимеразу – в клетках животных, полагают, что она может играть какую-то в роль в появлении раковых клеток. С другой стороны, в конце прошлого года мы писали, что новый коронавирус может встраиваться в хромосомы. Чтобы встроиться в ДНК клетки, коронавирусу нужно скопировать свою РНК в ДНК, но своего фермента для этого у него нет. В тех экспериментах коронавирусу помогали обратные транскриптазы древних ретровирусов, которые когда-то встроились в наш геном, да так в нём и заснули – их специально будили, чтобы проверить, смогут ли они «врезать» коронавирусные гены в клеточную ДНК. Однако с учётом новых данных можно предположить, что обычный клеточный фермент может сделать то же самое. Правда, чтобы подтвердить, действительно ли тета-полимераза встраивает вирусы в нашу ДНК, всё-таки нужны дополнительные эксперименты.
P.S. Ссылки на информацию, о которой упоминается в заметке:

Сколько вирусов в нашей ДНК
https://www.nkj.ru/news/28438/
Число спящих вирусных последовательностей в геноме человека увеличилось более чем вдвое.

Коронавирус в хромосомах
https://www.nkj.ru/news/40202/
Новый коронавирус SARS-CoV-2 способен встраиваться в человеческие хромосомы – правда, не полностью.

ArefievPV

  • Новичок
  • *
  • Сообщений: 1183
  • Карма: 0
    • Просмотр профиля
Он создавал ГИБРИДЫ людей и обезьян [Неэтичные эксперименты#4]



Цитировать
Таймкоды:
00:00 - Вступление.
02:41 - Химеры и гибриды.
05:43 - Неандерталец сегодня.
07:00 - Как это было?
08:22 - Надои и головокружительный успех.
09:34 - "Я создам гибрида человека и обезьяны".
11:00 - После прихода большевиков.
14:28 - Путешествие в Гвинею.
19:13 - Последний шанс избежать провала.
20:46 - Возвращение в СССР.
22:49 - Осеменение женщин в Сухуме.
24:23 - Смена политической обстановки.
25:36 - Оливер - получеловек?
26:54 - Новые виды людей.

Мы критикуем и развеиваем мифы западных и наших СМИ. Иронично стебемся над заголовками вроде "Сталинский Франкенштейн". Прежде чем ругать нас за "антисоветскую повестку", хотя бы досмотрите видео до конца. Ее здесь нет.

ArefievPV

  • Новичок
  • *
  • Сообщений: 1183
  • Карма: 0
    • Просмотр профиля
Верхние слои атмосферы Венеры признали непригодными для земных экстремофилов
https://nplus1.ru/news/2021/06/28/venus-water
Цитировать
Астрономы определили, что активность воды в облаках Венеры на высотах, где температура допускает существование микробиологических форм жизни, на два порядка ниже предела для известных экстремофилов. Это означает, что даже в верхних слоях атмосферы планеты жизнь земного типа вряд ли смогла бы выжить. Статья опубликована в журнале Nature Astronomy.

Условия вблизи поверхности Венеры нельзя назвать благоприятными для развития жизни —  средняя температура поверхности планеты составляет 467 градусов Цельсия, а атмосферное давление в несколько десятков раз выше земного. Однако недавнее открытие на высотах около 53-61 километров фосфина, который считается потенциальным биомаркером, возродило интерес к идее существования микробиологических форм жизни (например экстремофилов) в ее атмосфере.

С точки зрения физиологической активности организмов земного типа для них важно обилие воды, которую можно количественно оценить с помощью параметра активности воды. Даже если температура в атмосферах других планет допускает образование капель, содержащих различные вещества и воду, для более полной оценки обитаемости необходимо определить активность воды, которая зависит не только от температуры и давления, но и от состава атмосферы. Ученые предполагают, что допустимый температурный диапазон для метаболизма и роста микробиологических организмов составляет от  -40 до 130 градусов Цельсия, а активность клеток может происходить вплоть до значения активности воды 0,585.

Группа астрономов во главе с Джоном Холсвортом (John E. Hallsworth) из Университета Квинс в Белфасте решила определить активность воды в облаках Венеры, Юпитера и Марсе путем расчетов на основе данных наблюдений за температурой и содержанием водяного пара в атмосфере. Авторы считают, что нет никаких причин предполагать, что гипотетические венерианские организмы будут иметь такую ​​же биохимическую основу, как и на Земле, однако из-за отсутствия каких-либо альтернативных биохимических теорий, рассмотрели вопрос о том, могут ли организмы, похожие на земные, выжить на Венере, например в каплях сернокислотных облаков.


Активность воды и относительная влажность атмосферы Венеры в регионе, где температуры находятся в диапазоне от -40°C до 130°C.

Ученые определили, что значение активности воды для капель серной кислоты, которые составляют основную часть облаков Венеры, составляет менее 0,004, что на два порядка ниже предела для известных экстремофилов. Даже при температурах ниже нуля градусов по Цельсию в облаках Венеры не смогут образовываться кристаллы льда. Чтобы капли в облаках были пригодны для жизни, активность воды должна быть сильно неравновесной, что означает, что она не определяется относительной влажностью окружающей среды.

По мнению исследователей, ранее опубликованная теория о том, что венерианские организмы могли бы запасать воду, несколько расширяет возможности обитаемости облаков Венеры, однако все равно не может обойти необходимость в допустимом уровне активности воды. С этой точки зрения облака Юпитера (хоть их состав плохо подходит для развития жизни), где активностью воды оценивается в более чем 0,585, могли бы быть более пригодны для жизни земного типа, чем атмосфера Венеры. Что же касается Марса, то сильное ультрафиолетовое излучение и низкие температуры, позволяющие образовываться лишь ледяным облакам, дают значения активности воды гораздо ниже пределов, допустимых для форм жизни земного типа.

Ранее мы рассказывали, как ученые отыскали в атмосфере Венеры аминокислоту глицин, входящую в состав земных белков.
P.S. Очередная идея отброшена...

Ссылки на информацию, о которой упоминается в заметке:

Ученые предложили сценарий существования жизни в облаках Венеры
https://nplus1.ru/news/2020/08/31/venus-life-clouds

В атмосфере Венеры обнаружены следы фосфина. Это потенциальный биомаркер
https://nplus1.ru/news/2020/09/14/venus-phosphine

В атмосфере Венеры обнаружили глицин
https://nplus1.ru/news/2020/10/20/glycine-venus

ArefievPV

  • Новичок
  • *
  • Сообщений: 1183
  • Карма: 0
    • Просмотр профиля
Робохимику поручили проверку гипотез о зарождении жизни
https://nplus1.ru/news/2021/06/29/prebiotic-chemist
Цитировать
Химики создали робота, который может непрерывно на протяжении нескольких недель проводить химические реакции. При этом автоматизированная система способна сама отслеживать изменения в реакционной смеси и принимать решение, каким будет ее следующий шаг. Благодаря длительным экспериментам химики надеются показать, как именно из простых органических веществ сформировались более сложные молекулы. Работа опубликована в Nature Communications.

На ранней Земле пребиотические вещества под влиянием внешней среды на протяжении длительного периода (около ста миллионов лет) претерпевали изменения, формируя биохимические системы. Однако, когда современных ученые пытаются воссоздать условия подобных реакций, их эксперименты сильно ограничены по времени и длятся от нескольких часов до нескольких дней. Например, 3,7 процента всех реакций, опубликованных исследователями в период с 1771 по 2011 год, длились дольше двух дней. В то же время, по-настоящему полное исследование сложной многокомпонентной системы требует намного больше времени и порой – проведения нескольких параллельных экспериментов. Кроме того, полученные результаты требуют сложного анализа – образцы содержат множество соединений, и точно определить каждое из них практически невозможно.

Существует много теорий, которые пытаются объяснить, как именно живые системы возникли из неживых. Например, есть гипотеза, что углеводородный метаболизм возник как геохимический процесс и постепенно развился – пути реакций стали очень сложными. И несмотря на то, что отдельные этапы такого сценария были воспроизведены в лабораториях, всю гипотезу проверить невозможно – на это потребуется очень много времени. Эта же проблема возникает и для гипотез, объясняющих возникновение клеточных мембран или ДНК.

Большая часть подобных исследований сейчас фокусируется на пребиотических веществах – органических соединениях, из которых возникли затем молекулы, принципиально важные для развития жизни. Однако знания ученых в этой области геохимии сильно ограничены: неизвестно, какие начальные материалы были доступны, а также при каких условиях проходили реакции. Во многих экспериментах ученые сознательно ограничивают размер химического пространства – совокупности всех доступных соединений и реакций. Это позволяет определять каждый продукт реакций при помощи стандартных аналитических подходов. Для того чтобы воссоздать химическое пространство, похожее на то, в котором зарождалась жизнь, условия экспериментов должны быть комплексными. Например, можно добавить минеральные поверхности и сделать вариабельной температуру в системе и кислотность среды. Однако у ученых не хватает платформы, которая позволила бы проверять конкурирующие гипотезы на протяжении долгого времени.

Группа ученых из Университета Глазго под руководством Лероя Кронина (Leroy Cronin) представила робота-химика, который ставит эксперименты с пребиотическими соединениями. Исследователи надеются, что со временем в такой системе будут образовываться более сложные по строению вещества.

Сначала ученые при помощи машинного обучения обозначили, какие варианты результатов реакций могут возникнуть, если комбинировать 2-3 реагента из выбранных ими 18. Химики отмечают, что список из 18 стартовых веществ не может быть составлен объективно, потому что выбор соединений делает человек. Однако, множество возможных продуктов реакций так велико, что должно содержать в себе необходимые пребиотические соединения.


Восемнадцать соединений, выбранных учёными для старта эксперимента, и некоторые возможные продукты реакции двух или трёх веществ из них.


Полная сеть возможных реакций двух или трёх веществ из списка выбранных соединений.

Химики сконструировали робота таким образом, чтобы он мог повторять реакции циклами на протяжении долгого времени (30 дней и больше) при минимальном вмешательстве человека. Робот может менять состав стартовой комбинации реагентов и проводить эксперименты со смесями жидкостей (растворов веществ) и с твердыми минеральными частицами. Кроме емкостей для работы с реакционными смесями, к роботу присоединен аппарат для проведения жидкостной хроматографии с тандемной масс-спектрометрией.


Устройство робота-химика.

Автоматизированная система может проводить измерения и даже сама принимать решения, основываясь на показаниях спектрометрии. Каждый эксперимент состоит из 60-150 циклов по 3-12 часов. В системе присутствуют частицы кварца, улексита и пирита, к которым добавляются по 30 миллилитров растворов случайным образом выбранных двух-трех веществ. Реакции происходят при температуре 70 градусов Цельсия. В конце каждого цикла, небольшой образец смеси отправляется на масс-спектрометрический анализ, а 70 процентов смеси всего раствора – в емкость для хранения. К оставшейся части заново добавляются реагенты, и цикл повторяется. Таким образом, к концу эксперимента, в итоговой смеси остаются только те продукты, которые образуются в достаточно большом количестве в каждом цикле.

Ученые провели ряд экспериментов при помощи робота. Становится ли более сложным строение продуктов реакции, система отслеживала при помощи индекса массы – показателя, который отражает соотношение разницы между самым тяжелым и легким продуктом реакции к количеству пиков на спектре. Высчитывая индекс после каждого цикла реакции, система определяет, меняется ли состав продуктов в течение эксперимента. Как только показатель становится стабильным от цикла к циклу, робот меняет набор соединений, добавляемых в смесь.

Интересно, что исследователи провели один из таких экспериментов дважды, сначала – измеряя индекс после каждого цикла и позволяя алгоритму принимать решения насчет дальнейших шагов, а затем отключили алгоритм и повторили все его действия с теми же соединениями. Несмотря на всю идентичность условий, индекс массы смесей отличался на протяжении эксперимента. Ученые показали, что количество одних и тех же продуктов в смеси распределяется по-разному даже после идентичных прогонов. Химики предположили, что причиной стали минералы – даже добавляя частицы одинакового размера, нельзя точно воспроизвести условия реакций на их поверхности.

Конструкторы считают, что созданная ими платформа поможет другим ученым в исследованиях возникновения биохимических путей и проверки гипотезы о том, что такие пути возникли еще до появления ферментов. Алгоритм, который представили исследователи, достаточно простой для анализа «химического беспорядка», который становится результатом подобных экспериментов. В дальнейшем ученые надеются уточнить, какие процессы, например, помогли некоторым веществам не вымываться из реакционной смеси в ходе многих циклов эксперимента. Например, есть вероятность самокопирования молекул. Определение таких механизмов однажды может помочь найти недостающее звено в цепи перехода процессов от химических к биологическим.

Возможность самокопирования молекул (в качестве процесса-предшественника метаболизма) ученые уже показывали  экспериментально: молекулы в созданной системе могли самоорганизоваться в волокна. Кроме того, химики нередко показывают результаты экспериментов, поддерживающих гипотезу мире РНК – этапе возникновения жизни на Земле, во время которого РНК стала первой сложной биомолекулой, способной к самовоспроизведению и катализу. Так, исследователи описывали возможный путь синтеза пуринов из пребиотических соединений, а позже еще создали РНК-фермент, который теоретически мог катализировать биохимические реакции на ранних этапах зарождения жизни.

P.S. Ссылки на информацию, о которой упоминается в заметке:

Химики создали способную к протометаболизму систему
https://nplus1.ru/news/2020/06/30/protometabolism

Эффективный полимеразный рибозим подкрепил гипотезу мира РНК
https://nplus1.ru/news/2021/03/25/clamp-your-rna

ArefievPV

  • Новичок
  • *
  • Сообщений: 1183
  • Карма: 0
    • Просмотр профиля
Эмбрион обнуляет свои часы вскоре после зачатия
https://www.nkj.ru/news/41680/
Цитировать
Перед тем, как внедрится в стенку матки, зародыш забывает эпигенетический возраст родителей.

В клетках есть несколько механизмов, отмеряющих возраст. Один из самых известных связан с теломерами, концевыми участками хромосом, которые укорачиваются при каждом делении. Другие часы, которые часто оказываются на слуху, это эпигенетические метки. Эпигенетика, или, говоря более корректно, эпигенетические модификации представляют собой несколько молекулярных механизмов, которые надолго меняют активность генов. Чаще всего говорят про модификации на самой ДНК или на белках, которые её упаковывают: определённые химические группы, присоединяясь к ДНК или связанным с ней белкам-упаковщикам, повышают или понижают активность генов.

Эпигенетические механизмы реагируют как на изменения в самой клетке, так и вокруг неё. И поскольку эпигенетические метки остаются очень и очень надолго, по их узору можно оценить биологический возраст клетки, а то и всего организма. При этом известно, что эпигенетические следы старения остаются у всех клеток, в том числе и у половых. Почему тогда при оплодотворении эмбрион не наследует биологический возраст родителей?

Очевидно, потому, что биологические часы у него обнуляются. Но происходит это не сразу, а несколько дней спустя. Сотрудники Гарвардского университета и бостонской клиники «Бригем энд уименс» следили, что происходит с эпигенетическими метками на ДНК мышиного эмбриона на самых ранних этапах развития.

В статье в Science Advances исследователи пишут, что в первые дни с возрастными метками ничего не происходило – часы как бы стояли на месте. И лишь когда эмбриону было около 6,5–7,5 дней, когда он имплантировался в стенку матки, его часы отскакивали назад. Сбрасывались возрастные настройки, которые эмбрион получил от сперматозоида и яйцеклетки, и после этого сеанса молекулярного омоложения часы снова начинали идти вперёд.

Какой молекулярный механизм тут срабатывает, какие белки участвуют, пока неясно. Также неясно, насколько такой механизм универсален. Можно предположить, что нечто подобное происходит у всех млекопитающих, и что у человека обнуление возрастных часов происходит позже – просто потому, что эмбриональное развитие у нас длится намного дольше. Так или иначе, все эти вопросы предстоит изучить – и, возможно, в перспективе мы научимся включать эмбриональное омоложение в некоторых наших тканях, чтобы замедлять в них возрастные изменения, приводящие к трудноизлечимым хроническим болезням.

ArefievPV

  • Новичок
  • *
  • Сообщений: 1183
  • Карма: 0
    • Просмотр профиля
Поляризованный свет привлек к воде зараженных волосатиками богомолов
https://nplus1.ru/news/2021/07/03/zombie-mantises
Цитировать
Паразитические личинки волосатиков заставляют своих хозяев – хищных наземных насекомых – стремиться к водоемам, так как взрослые особи этих червей обитают в воде. Ученые изучили поведение зараженных богомолов и обнаружили, что волосатики манипулируют восприятием света хозяина — насекомых к водоемам привлекает поляризованный свет, который отражается от поверхности воды. Результаты исследования опубликованы в журнале Current Biology.

Среди паразитов часто встречается способность к манипулированию поведением своих хозяев. К примеру, гриб кордицепс лишает хозяина — муравья-древоточца — обоняния и влияет на циркадные ритмы и передачу нейромедиаторов, в результате чего зараженное насекомое забирается на растение и вцепляется в него челюстями. После этого из тела муравья прорастает гриб и распространяет свои споры. Паразитический протист токсоплазма меняет поведение своих промежуточных хозяев — они становятся смелее и любопытнее, из-за чего чаще становятся жертвой кошачьих — окончательных хозяев паразита (1, 2, 3).

Манипулируют поведением хозяев и волосатики (Nematomorpha) — родственные нематодам черви с волосовидным телом, чьи личинки ведут паразитический образ жизни. Взрослые особи волосатиков — свободноживущие организмы, обитающие в водоемах. В упрощенном виде жизненный цикл волосатиков (4, 5) можно представить следующим образом. После спаривания самка откладывает яйца на водные растения. Из яйца через несколько дней выходит личинка, которая проникает в водную личинку насекомого (например, поденки), служащую паратеническим (транспортным) хозяином. После метаморфоза зараженное насекомое покидает водную среду.

На суше паратенического хозяина съедает хищное насекомое (богомол, кузнечик или жужелица), в чьем организме личинка волосатика и развивается. Перед завершением развития паразит начинает влиять на поведение хозяина — заставляет его стремиться к воде. В водоеме волосатик покидает хозяина через задний конец его тела (через кишку или покровы), после чего насекомое может выжить, если не утонет или не будет съедено. Такой жизненный цикл характерен для пресноводных волосатиков, которые составляют большинство видов. Однако есть несколько морских видов, чьи личинки паразитируют на ракообразных, например на раках-отшельниках.


Схема жизненного цикла волосатиков

Долгое время было неизвестно, каким образом волосатики заставляют наземных насекомых стремиться к воде. Сначала ученые предполагали, что паразиты вызывают у своих хозяев жажду. Затем было показано, что волосатики способствуют появлению у хозяев положительного фототаксиса — направленного движения к источнику света. Исследователи объяснили это тем, что водоемы отражают солнечный или лунный свет, который и привлекает насекомых.

Насоно Обаяси (Nasono Obayashi) из Университета Кобе и его коллеги из Японии и Тайваня посчитали, что фототаксиса недостаточно для привлечения насекомых к воде, так как в природе довольно много объектов, которые отражают свет, например, песок. Биологи предположили, что волосатики вызывают у зараженных насекомых положительный поляротаксис — движение по направлению к источнику поляризованного света, так как, отраженный от поверхности воды солнечный свет становится горизонтально поляризован.

Для подтверждения своей гипотезы исследователи решили изучить поведение богомола Hierodula patellifera, в котором паразитируют личинки волосатика Chordodes sp. Ученые собрали 59 зараженных и 44 незараженных особи богомолов в нескольких населенных пунктах японского острова Хонсю. Зараженных особей можно было определить по брюшку, из которого виднелся передний конец тела паразита. Незараженных особей после экспериментов вскрыли, чтобы подтвердить отсутствие волосатиков. При этом у некоторых особей обнаружили недавнее заражение, поэтому они были исключены из анализа.

Сначала ученые провели эксперимент в лаборатории: богомолов помещали в цилиндр, на одном из концов которого был источник поляризованного (горизонтально или вертикально), а на другом — неполяризованного света. Исследование проводили при четырех уровнях освещенности: 150 люксов (соответствует сумеркам), 2000 люксов (утро в пасмурную погоду), 6000 люксов (полдень в пасмурную погоду), 15000 люксов (солнечный день). Это было сделано для того, чтобы проверить, влияет ли освещенность на поведение богомола. Через 10 минут ученые фиксировали положение насекомого в цилиндре. Оказалось, что зараженные богомолы чаще, чем незараженные, выбирали источник поляризованного света (p = 0,005), причем именно с горизонтальной поляризацией. Такое поведение зараженные насекомые проявляли при освещенности 2000 и более люксов.

Затем ученые провели второй эксперимент. На сельскохозяйственной территории, принадлежащей Университету Кобе, исследователи сделали два бассейна: глубокий с темным дном и неглубокий со светлым. Первый отражал сильно поляризованный и тусклый свет, второй — слабо поляризованный, но яркий. Эксперимент проводился с 13 по 28 октября 2020 года — в это время волосатики в природе манипулируют своими хозяевами, чтобы попасть в водоем. Возле бассейнов биологи поставили саженцы дуба, на которые помещали богомолов, так как H. patellifera — древесный вид. Также ученые установили камеры, которые фиксировали поведение насекомых. В эксперименте участвовали 31 зараженная и 19 незараженных особей.

В результате 16 зараженных богомолов прыгнули в воду, в то время как среди незараженных такое поведение проявила только одна особь (р < 0,001). Среди этих 16 богомолов 14 особей выбрали глубокий бассейн (p = 0,0042). Также исследователи выяснили, что насекомые предпочитали прыгать в водоемы в полдень. Биологи провели дополнительный эксперимент в лаборатории, который показал, что зараженные богомолы были наиболее активны в полдень и полночь.

Ученые пришли к выводу, что волосатики вызывают у богомолов положительный поляротаксис, а также изменение в суточной активности, благодаря чему паразиты в итоге попадают в воду. Авторы работы отмечают, что теперь необходимо установить нейробиологические механизмы такого манипулятивного воздействия.

Многие виды членистоногих могут видеть поляризованный свет. Например, раки-богомолы воспринимают линейную и круговую поляризацию света, и постоянное вращение глаз помогает им в этой способности.
P.S. Читал где-то (сходу не смог ссылку отыскать), что микрофлора в нашем желудочно-кишечном тракте тоже может влиять: на настроение, на предпочтения и даже на появление желаний и, тем самым, в конечном итоге, влияет и на наше поведение.

Ссылки на информацию, о которой упоминается в заметке:

Постоянное вращение глаз помогает ракообразным видеть поляризованный свет
https://nplus1.ru/news/2016/07/13/polarotateye

Зомбирующие грибы лишили муравьев сна и обоняния
https://nplus1.ru/news/2020/06/09/cordiceps

ArefievPV

  • Новичок
  • *
  • Сообщений: 1183
  • Карма: 0
    • Просмотр профиля
Удачно заметка подвернулась (это я к предыдущему сообщению)...

Бактерии делают мышей общительными
https://www.nkj.ru/news/41706/
Цитировать
Уровень стрессовых гормонов и готовность к социальным контактам зависит от кишечной микрофлоры.

Есть много свидетельств тому, что кишечные бактерии влияют на мозг. Например, мы писали, что бактериальные препараты помогают справиться с послеродовой депрессией, что бактерии стимулируют появление новых нейронов в мозге мышей, что реакция маленьких детей на страшные вещи зависит от их микрофлоры. Но одно дело – увидеть связь между одним и другим, и совсем другое дело – понять, какой механизм тут работает.

Сотрудники Калифорнийского технологического института ставили эксперименты с мышами, которых лишали микрофлоры, а потом предлагали познакомиться друг с другом. Обычно мыши довольно любопытны, при встрече незнакомые мыши  обнюхиваются и начинают вместе возиться: залезают друг другу на голову и т. д. Но если у мышей не было микрофлоры (животных либо с рождения держали в стерильных условиях, чтобы у них в кишечнике никто не завёлся, либо изгоняли бактерий антибиотиками), то такие мыши избегали знакомств и вообще старались держаться поодаль от других.

Такую реакцию у безбактериальных мышей наблюдали и раньше, но теперь исследователи захотели выяснить, что происходит у них в мозге. В статье в Nature говорится, что у мышей без микрофлоры активно работали нейроны в тех отделах мозга, которые связаны с реакцией на стресс. Одновременно у мышей повышался уровень стрессового гормона кортикостерона, синтезирующегося в надпочечниках. Если синтез кортикостерона тем или иным способом подавляли, или блокировали в мозге рецепторы к нему, то общительность к мышам возвращалась.

Реакция надпочечников на стресс зависит от гипофиза и гипоталамуса (все вместе в входят в так называемую гипоталамо-гипофизарно-надпочечниковую ось). Гипоталамус даёт сигнал гипофизу, тот – надпочечникам, а уже стероидные гормоны надпочечников дают конкретные указания, что делать всему организму, и разным отделам мозга в том числе.

В гипоталамусе есть нейроны, синтезирующие кортиколиберин – гормон, который запускает всю цепочку сигналов. Если активность этих нейронов подавляли, то мыши без микрофлоры переставали сторониться других мышей. И наоборот, если активность нейронов с кортиколиберином стимулировали у обычных мышей, то они начинали избегать социальных контактов, несмотря на нормальную микрофлору.

То есть мыши без микрофлоры становятся необщительными потому, что у них в гипоталамусе повышается активность клеток, запускающих систему стрессовых гормонов – при стрессе общаться не слишком хочется, пусть даже этот стресс – ложный. Исследователям удалось также найти как минимум одну бактерию, Enterococcus faecalis, которая возвращала, так сказать, радость общения – когда её вводили безбактериальным мышам, те снова начинали интересоваться социальной жизнью, а уровень кортикостерона у них падал.

Проблемы с социализацией возникают у людей с разными психоневрологическими болезнями. Возможно, что у них можно с помощью бактериальных препаратов подействовать на гормоны и тем самым вернуть их к нормальной социальной жизни. В конце концов, мы уже как-то рассказывали, что симптомы аутизма у детей и подростков можно ослабить с помощью правильных микробов. Но у мышей и у людей состав микрофлоры отличается, и тут нужно ещё поработать, чтобы в точности узнать, от каких именно бактерий зависит наша реакция на других людей.
P.S. Ссылки на информацию, о которой упоминается в заметке:

Микрофлора для мозга
https://www.nkj.ru/facts/28846/
Кишечные бактерии нужны мозгу.

Бактерии против депрессии
https://www.nkj.ru/facts/32381/
Пробиотики ослабляют послеродовую депрессию

Бактерии против аутизма
https://www.nkj.ru/news/34148/
Симптомы аутизма у детей и подростков можно ослабить с помощью правильных микробов.

ArefievPV

  • Новичок
  • *
  • Сообщений: 1183
  • Карма: 0
    • Просмотр профиля
Почему каланы не мёрзнут в воде
https://www.nkj.ru/news/41774/
Цитировать
Мышцы каланов позволяют тратить много энергии на тепло.

Вода проводит тепло намного лучше, чем воздух. Поэтому морским теплокровным животным нужно всё время думать, как бы не замёрзнуть – особенно, если ты живёшь в северных морях или рядом с Антарктикой. С одной стороны, тут помогают большие размеры: чем ты крупнее, тем больше тепла сохранишь внутри себя. С другой стороны, у морских зверей есть мощная теплоизоляция – слои жира под кожей.

Но как в таком случае быть каланам? Это самые маленькие из морских млекопитающих (до 1,5 м в длину и массой до 39 кг), жировых запасов у них особо нет, а живут они в северной части Тихого океана, в не самых тёплых водах. У каланов довольно плотный мех, считается, что даже самый плотный среди зверей, но и он не может защитить от слишком больших теплопотерь в воде.

Конечно, есть ещё обмен веществ: можно сжигать побольше калорий, направляя их на обогрев. Действительно, метаболизм у каланов очень интенсивный для млекопитающих, они расходуют в три раза больше энергии, чем другие звери такого же размера (и поэтому должны много есть – масса еды, которую калан съедает за день, составляет 25% от массы тела). Но каков механизм интенсивного каланьего метаболизма?

Сотрудники Техасского университета A&M изучали образцы мышц каланов, взятые как у взрослых животных, так и у детёнышей. Исследователи оценивали, сколько кислорода поглощают мышцы каланов по сравнению с мышцами людей, ездовых собак и морских слонов. По расходу кислорода можно судить о том, как работают энергетические станции клетки – органеллы митохондрии.

Смысл всех энергетических реакций в том, чтобы перегруппировать протоны (ионы водорода) на мембране митохондрий. Получается что-то вроде плотины на реке: по одну сторону мембраны ионов становится много, а по другую – мало. И вот когда разница в протонах окажется достаточной, они начинают бежать обратно и одновременно запускают фермент, синтезирующий АТФ – главную энергетическую молекулу клетки (энергию из АТФ можно легко очень добыть обратно и израсходовать там, где требуется). Протоны работают, как вода в гидроэлектростанции, вращая турбину, которая даёт электрический ток.

Но бывает, что протоны в митохондриях работают вхолостую. Скопившись на одной стороне мембраны, они перетекают обратно в обход того фермента, который синтезирует АТФ. И в таких случаях их энергия уходит в тепло. Именно так каланы и согреваются. Скелетные мышцы занимают в теле зверей 40–50% массы тела, и если во всех мышцах идут такие тепловые утечки, этого достаточно, чтобы согреть всё тело. Притом, каланы не дрожат – их мышцы не сокращаются, они дают тепло в состоянии покоя.

Такой же механизм работает у очень мелких грызунов с чрезвычайно интенсивным обменом веществ. Однако в статье в Science говорится, что у каланов митохондриальная печка греет тело намного эффективнее. Исследователи полагают, что каланы как-то регулируют её работу, согреваясь тогда, когда нужно. Если бы так много энергии утекало в тепло у какого-нибудь другого зверя, это говорило бы о чрезвычайно неэффективном обмене веществ. Но у каланов энергетическая неэффективность превратилась в преимущество.

ArefievPV

  • Новичок
  • *
  • Сообщений: 1183
  • Карма: 0
    • Просмотр профиля
Многоклеточность за пятьсот поколений
https://www.nkj.ru/news/41784/
Цитировать
Зелёные водоросли ради собственного спасения всего за полгода научились жить вместе.

Одна из самых больших загадок в истории жизни на Земле – это появление многоклеточных организмов. С одной стороны, можно представить, как всё происходило: какой-то одноклеточный организм делился с образованием двух дочерних клеток, а потом оказалось, что дочерние клетки не разбегаются в стороны, а остаются вместе – так через несколько поколений образуется колония из генетически идентичных клеток. Но чтобы так произошло, клеткам должно быть выгоднее оставаться вместе, чем быть поодиночке. Должен быть какой-то фактор, из-за которого одиночные клетки плохо размножаются и быстро гибнут, а колонии с заявкой на многоклеточность, наоборот, процветают.

Всё это, может быть, легко придумать, но трудно проверить. Тем не менее, сотрудникам Констанцского университета вместе с коллегами из Института эволюционной биологии Общества Макса Планка удалось экспериментально показать, что такой вариант развития событий вполне возможен. Более того, по эволюционным меркам, как мы привыкли их себе представлять, тут нужно совсем немного времени.

Исследователи ставили опыты с одноклеточной Chlamydomonas reinhardtii, зелёной водорослью из порядка Хламидомонадовых. Среди них есть как одноклеточные формы, так и многоклеточные. Впрочем, по-настоящему многоклеточными их назвать нельзя – те хламидомонадовые, что кажутся многоклеточными, живут колониями или скоплениями, которые называются ценобиями: они не образуют единую систему, у них нет межклеточных связей и тем более дифференцировки клеток по функциям. Тем не менее, всё же их что-то заставило перейти к коллективной жизни, и Chlamydomonas reinhardtii для экспериментов выбрали потому, что у неё есть такие «многоклеточные» родственники и  её наверняка можно как-то склонить к такому же образу жизни.

Хламидомонады выращивали в лаборатории вместе с коловратками – крохотными животными, которые питались водорослями. Одноклеточные водоросли ничего противопоставить коловраткам не могли. Зато те хламидомонады, которые после размножения не разбегались и оставались в виде слипшейся многоклеточной колонии, могли уже не беспокоиться – в глотку коловраткам они просто не пролезали.

Соответственно, коловратки оказались тем фактором, который склонял водоросли к многоклеточности: с каждым поколением у них появлялись мутации, из-за которых хламидомонады после деления оставались слипшимися вместе. Если коловраток вокруг водорослей не было, то колонии среди них появлялись не слишком часто, и никакого преимущества перед одноклеточными водорослями у них не было. С коловратками же водоросли всё чаще и чаще начинили образовывать колонии – просто потому, что у тех, кто это умеет, было больше шансов выжить.

На то, чтобы научиться многоклеточности, водорослям понадобилось всего 500 поколений и полгода времени. Причём, эволюция в данном случае шла по одному пути: у разных линий хламидомонад, которые жили отдельно друг от друга, возникали примерно одни и те же «колониальные» мутации. Повторим, что это пока ещё не настоящая многоклеточность: у хламидомонад в колонии нет разделения труда и связи между ними довольно слабы. Но если совместная жизнь по-прежнему будет для них выгодна, они начнут её улучшать – и теперь уже в разных колониях начнут появляться мутации, которые помогают клеткам специализироваться и тем самым лучше выживать. Результаты исследований опубликованы в Nature Communications.

Можно представить и другой способ формирования многоклеточного организма: например, когда колонию образуют посторонние клетки, собравшиеся вместе при определённых условиях среды. Так поступают, например, знаменитые амебоподобные слизевики Dictyostelium discoideum, живущие в почве и питающиеся почвенными бактериями. Когда пищи много, слизевики живут порознь, но когда ее становится мало, сползаются вместе, становясь похожими на небольшого слизня (откуда и название).

В таком виде колония начинает двигаться к теплу и свету, и, найдя подходящее место, формирует плодовое тело. При этом часть клеток превращаются в стебелек, подпорку, на вершине которого оставшиеся клетки формируют споры – ветер перенесет их туда, где условия жизни могут быть получше. То есть те, кому посчастливилось попасть в споры, выживают за счет тех, которые образовали ножку плодового тела.

Но здесь возникают трудности, связанные с тем, что сложную дифференцированную колонию образуют клетки, которые генетически более или менее разнородны, это не потомки одного общего предка. А разные гены с биологической точки зрения означают разные интересы, и поэтому в колонии могут появиться настоящие жулики, пытающиеся обеспечить себе потомство за счёт других.
P.S. Ссылка в дополнение:

Одноклеточный альтруизм с экономическим лицом
https://www.nkj.ru/news/33776/
Одноклеточные слизевики готовы жертвовать собой в том случае, если их жертва оправдана с генетической точки зрения.

ArefievPV

  • Новичок
  • *
  • Сообщений: 1183
  • Карма: 0
    • Просмотр профиля
Почему наши органы не рассыпаются на части
https://www.nkj.ru/news/41785/
Цитировать
Умирающие клетки на время запрещают умирать своим соседям – благодаря этому ткани и органы сохраняют целостность.

Что странного в том, что органы и ткани не распадаются на куски – ведь их клетки соединены между собой и с межклеточным веществом специальными молекулярными креплениями? Но клетки стареют, выходят из строя и умирают. Умирающих клеток может быть не десяток, и не сотня, и даже не тысяча: например, в кишечнике в день погибают более десяти миллиардов клеток кишечного эпителия. Конечно, на смену им приходят новые, родившиеся от стволовых клеток. Но представим себе эти десять миллиардов – как получается, что в кишечном эпителии не возникают дыры?

Сотрудники Института Пастера пишут в Developmental Cell, что тут всё дело в том, как именно гибнут клетки. Исследователи экспериментировали с эпителиальными клетками дрозофилы, и обнаружили, что у соседей умирающей клетки на некоторое время активируется сигнальный путь ERK. Любой сигнальный путь представляет собой цепочку рецепторов и ферментов, которые принимают сигналы из внешней среды и передают тем или иным получателям внутри клетки.

Сигнальный путь ERK назван так по центральному ферменту, киназе ERK – extracellular signal-regulated kinase, или киназа, регулируемая внеклеточными сигналами. Киназами называют ферменты, прикрепляющие остатки фосфорной кислоты к другим белкам и тем самым меняющим их активность. Сигнал по ERK-пути доходит до клеточного ядра, в котором активирует гены выживания. Умирающая клетка заставляет соседей жить – может, они бы и умерли вслед за ней, но включившийся сигнальный путь ERK им этого не позволяет.

Иными словами, в эпителии клетки не могут погибнуть сразу большой группой, вместе с соседями и соседями соседей. Вокруг отмершей клетки всегда будут выжившие, и благодаря им ткань сохраняет целостность. Если же отключить сигнальный путь ERK, то клетки начнут гибнуть вместе с соседями – это будет происходить не всегда, но довольно часто, причём настолько часто, что эпителий действительно начнёт расползаться.

Работает ли такой механизм и в человеческих тканях тоже? Исследователи из Бернского университета в другой статье, также опубликованной в Developmental Cell, пишут, что в человеческих эпителиальных клетках происходит то же самое: сигнальный путь ERK не даёт им погибать монолитными кучами. То есть, механизм, который упорядочивает гибель вышедших из строя клеток, на самом деле очень древний, коль скоро он работает у таких далёких видов, как муха и человек. С другой стороны, животные ещё на заре своей эволюции должны были задуматься, как поддерживать целостность собственных тканей при постоянном отмирании и обновлении клеток; сигнальный путь ERK, по-видимому, оказался здесь исключительно удачным инструментом.
P.S. "Должны были задуматься" - неудачный оборот...

ArefievPV

  • Новичок
  • *
  • Сообщений: 1183
  • Карма: 0
    • Просмотр профиля
Ученые выяснили, как слизевик без мозга может ориентироваться в окружающей среде и принимать решения
https://www.popmech.ru/science/news-722933-uchenye-vyyasnili-kak-slizevik-bez-mozga-mozhet-orientirovatsya-v-okruzhayushchey-srede-i-prinimat-resheniya/?from=main_1
Цитировать
Оказывается, отсутствие мозга мешает ориентироваться в пространстве не всем существам. Ученые обнаружили, что безмозглая слизистая плесень под названием Physarum polycephalum способна выполнять вычисления относительно окружающей среды и принимать важные решения о том, в каком направлении двигаться.

Слизевик использует «механочувствительность», чтобы реагировать на форму, размер и массу других объектов и перемещаться по окружающей среде.

Physarum polycephalum – любопытное существо. Фактически, оно не является ни плесенью, ни животным, ни растением. Это объединение отдельных эукариотических клеток, которые связаны вместе внутри единой мембран, и живут внутри общей цитоплазмы.

Ранее ученые выяснили, что Physarum polycephalum способен находить путь к еде в центре лабиринта, улавливая химические сигналы, чтобы определить местонахождение награды. Теперь исследователи решили выяснить, может ли слизевик принимать решения в отсутствие таких сигналов.

В новом исследовании, опубликованном в журнале Advanced Materials, ученые поместили слизевика в чашку Петри, содержащую агаровый гель. С одной стороны чашки размещался один небольшой стеклянный диск. С противоположной стороны – три стеклянных диска, расположенных в ряд. Чашу поставили в темную комнату.

Первый 12 часов Physarum polycephalum тянулся равномерно во всех направлениях. Затем, к 24-часовой отметке, 70% образцов выросли в сторону трех дисков.

Исследователи выдвинули гипотезу о том, что слизь способна обнаруживать искажения в агаровом геле, производимом этими дисками, и двигаются к областям с более сильными искажениями в надежде обнаружить более крупный кусок пищи. Однако, когда эксперимент повторили, на этот раз с участием трех дисков, установленных друг на друга с одного конца и одного диска с другого, слизевик больше не отдавал предпочтение более тяжелому объекту и двигался в обе области примерно с одинаковой частотой.

Второй эксперимент показал, что организм не использует только массу, чтобы оценить, в какую сторону двигаться, но принимает во внимание больше факторов. Для дальнейшего понимания ученые использовали компьютерное моделирование, чтобы проанализировать степень нагрузки, оказываемой на агаровый гель при каждом расположении дисков.

При размещении рядом друг с другом на упругом агаровом геле три диска деформировали гель иначе, чем при размещении стопкой. Science Alert сравнивает это с тремя гирями, помещенными рядом друг с другом на батуте. Так они вызывают иную деформацию батута, чем гири, сложенные в стопку.

«Представьте, что вы едете по шоссе ночью и ищете город, в котором можно остановиться. Вы видите два разных расположения света на горизонте: одну яркую точку и группу менее ярких точек. Хотя одна точка ярче, группа точек освещает более широкую область, которая с большей вероятностью указывает на город, и вы направляетесь туда», – поясняют исследователи.

У Physarum polycephalum нет нервной системы, поэтому ученые задались вопросом, как слизь улавливает эту картину деформации. Исследователи выяснили, что это связано с движением организма и внутренней связью.

У других организмов, в том числе млекопитающих, в клеточных мембранах есть молекулы, называемые белками TRP, которые могут обнаруживать растяжение. Чтобы определить, использует ли Physarum тот же механизм для навигации, исследователи применили вещество, блокирующее TRP-каналы. В итоге слизь утратила способность различать различные конфигурации дисков.

«Наше открытие использования этой слизистой плесени биомеханики для исследования окружающей среды и реакции на нее подчеркивает, насколько рано эта способность появилась у живых организмов», – пишут ученые.

ArefievPV

  • Новичок
  • *
  • Сообщений: 1183
  • Карма: 0
    • Просмотр профиля
Скакунчики узнали пауков в движущихся силуэтах из точек
https://nplus1.ru/news/2021/07/16/menemerus-semilimbatus
Цитировать
Скакунчики узнают в определенных объектах беспозвоночных животных, основываясь на особенностях их движений. К такому выводу пришли американские и немецкие зоологи, проведя ряд экспериментов с представителями вида Menemerus semilimbatus. Оказалось, что, если показать скакунчику видеозапись, на которой силуэт движущегося паука преобразован в набор точек, соответствующих его конечностям, он определит его как животное. Правда, нереалистично движущиеся наборы точек привлекли большее внимание подопытных особей. Результаты исследования опубликованы в статье для журнала PLoS Biology.

В большинстве случаев животные, в том числе люди, с легкостью определяют, является ли тот или иной объект другим животным. Это позволяет им вовремя замечать сородичей, хищников или потенциальную добычу. Специалисты предполагают, что данный навык основан на распознавании движений. Дело в том, что по крайней мере у позвоночных части тела движутся друг относительно друга в соответствии с определенной схемой (например, расстояние между одними суставами при движении меняется, а между другими нет). Если перемещающийся объект соответствует ей, мозг считает его человеком или животным. Так, люди в экспериментах способны правильно распознавать на видеозаписи движущийся человеческий силуэт, который представлен всего одиннадцатью точками, соответствующими основным суставам. Похожие навыки характерны и для многих других позвоночных. Судя по тому, что их выявляют даже у молодых особей, они являются врожденными.

Тела членистоногих, покрытые жестким экзоскелетом, также перемещаются в соответствии с определенным шаблоном. Умение распознавать его была бы очень выгодным для беспозвоночных животных. Однако до сих пор оставалось неясным, способны ли они на это.

Разобраться в данном вопросе решила команда зоологов под руководством Массимо де Агро (Massimo De Agrò) из Гарвардского университета. Исследователи сосредоточили внимание на пауках-скакунчиках (Salticidae), в жизни которых зрение играет очень важную роль. У этих беспозвоночных восемь глаз, выполняющих разные функции. Пара так называемых первичных глаз, самых крупных и направленных вперед, обладает самым острым зрением, однако угол обзора у нее невелик: менее пяти градусов. Поэтому для постоянного мониторинга обстановки вокруг себя скакунчики используют три пары вторичных глаз, которые расположены по бокам головогруди. Когда в поле зрения этих глаз попадает движущийся объект, паук резко поворачивается к нему всем телом, чтобы получше рассмотреть первичными глазами. Это движение такое быстрое, что специалисты сравнивают его с саккадами — непроизвольными движениями глаз человека и многих других животных.

Из предыдущих исследований де Агро и его коллегам было известно, что скакунчики поворачиваются не на любое движение. Чтобы выяснить, какие критерии влияют на реакцию этих пауков, они взяли 60 скакунчиков Menemerus semilimbatus и провели с ними ряд экспериментов. Подопытных особей подвешивали над подвижной сферой так, чтобы их ноги прикасались к ней. Затем на мониторе компьютера им демонстрировали перемещающиеся объекты пяти типов. Движения каждого из них были основаны на видеозаписи движений другого скакунчика, Salticus scenicus. Для эксперимента силуэт паука с видео преобразовали в набор из множества движущихся точек, соответствующих его конечностям. Точки, из которых состояли объекты первого типа, сохранили те же траектории и взаимное расположение, что и на оригинальной записи. В объектах второго типа траектории точек сохранились, но изменилось их положение, а в объектах третьего типа точки двигались случайным образом. При создании объектов четвертого типа исследователи соединили точки в единый силуэт и добавили условное изображение тела паука, а пятый тип объектов представлял собой обычный эллипс.

Каждый скакунчик прошел по четыре испытания, в ходе которых ему одновременно демонстрировали по два движущихся объекта разного типа. Они появлялись с правого и левого края экрана, двигались с остановками в сторону центра, а затем встречались здесь и исчезали — причем на протяжении одного теста данная запись повторялась десять раз подряд (изначальное расположение объектов при этом меняли местами). Поскольку головогрудь пауков была зафиксирована, они не могли повернуться к заинтересовавшему их стимулу — однако вращали лапками сферу в определенном направлении. Это позволило де Арго и его соавторам зафиксировать, какие объекты вызывают у скакунчиков наибольший интерес.

Анализ собранных данных показал, что эллипсы интересуют скакунчиков сильнее, чем силуэты (p<0,0001), а объекты третьего типа (со случайно движущимися точками) — сильнее объектов второго типа (тех, у которых траектория точек сохранена) (p=0,0001). Кроме того, пауки чаще пытались повернуться к объектам третьего типа, чем к объектам первого типа (то есть повторяющим движения оригинала) (p<0,0006). Объекты первого и второго типа вызвали у подопытных особей примерно одинаковый интерес, что совпадает с результатами аналогичных тестов у позвоночных.

По мнению де Агро и его коллег, результаты исследования свидетельствуют, что скакунчики умеют различать объекты, движения которых напоминают других пауков, основываясь на схеме их движения. Правда, такие объекты вызывают у них меньший интерес, чем те, что движутся нереалистично. Такое предпочтение оказалось для авторов неожиданным: они предполагали, что пауки будут чаще поворачиваться к тем стимулам, что сильнее напоминают настоящих членистоногих. Возможно, скакунчики обрабатывают информацию об узнаваемо движущихся объектах с помощью отделов мозга, связанных со вторичными глазами, так что им необязательно смотреть на них первичными. А вот незнакомые стимулы так не распознать — и чтобы понять, что они собой представляют, пауки должны рассмотреть их повнимательнее с помощью крупных первичных глаз.

Таким образом, способность распознавать животных, основываясь на особенностях их движения, встречается не только у позвоночных, но и у по крайней мере некоторых беспозвоночных (по мнению де Агро и его коллег, помимо паукообразных, она также может быть характерна для насекомых и моллюсков). Возможно, данный навык был унаследован представителями этих групп от общего предка — хотя вероятнее, что он неоднократно и независимо возникал в процессе конвергентной эволюции.

Ранее мы рассказывали о том, как зоологи покрасили скакунчиков Habronattus pyrrithrix косметикой. Это позволило опровергнуть популярную идею, согласно которой контрастная расцветка самцов этого вида помогает им отпугивать хищников.

ArefievPV

  • Новичок
  • *
  • Сообщений: 1183
  • Карма: 0
    • Просмотр профиля
Люди выживают без жизненно важного гена
https://www.nkj.ru/news/41824/
Цитировать
В отличие от мышей, люди способны жить без одного из мусороуборочных генов, хотя жизнь их всё равно будет полна проблем.

Ген ATG7 жизненно необходим – если сломается, если он перестанет работать, организм умрёт, едва родившись. Но это только если речь идёт о мышах. В недавней статье в The New England Journal of Medicine говорится, что люди без гена ATG7 вполне себе живут, хотя и страдают от разных заболеваний.

Аббревиатура ATG7 означает autophagy related 7, то есть «ген, имеющий отношение к аутофагии – 7». Аутофагия – чрезвычайно важный процесс переработки ненужных внутриклеточных органелл, молекулярных комплексов и просто отдельных молекул. Мы подробно рассказывали об аутофагии в связи с Нобелевской премией, которую дали в 2016 году за расшифровку её механизма.

Вкратце там происходит следующее: в клетке появляется мембранный пузырёк, который ловит в себя внутриклеточные структуры, вышедшие из строя или просто ставшие ненужными. Образуется аутофагосома, в которой всё это ненужное и испорченное переваривается, расщепляется на составные части – и клетка получает энергию и строительные материалы для того, чтобы сделать новые молекулы и органеллы. Без аутофагии клетка, скорее всего, погибнет из-за накопившегося мусора и из-за испорченных органелл, которые работают неправильно и пользы уже не приносят, только вредят.

ATG7 нужен как раз для правильного формирования пузырьков-аутофагосом. Если его отключить, то, как было сказано, аутофагия прекращается, и организм долго не живёт – новорождённые мыши без ATG7 погибают в течение дня: аутофагия особенно важна, когда органы и ткани только развиваются. Однако авторы статьи обнаружили несколько лет назад семью с двумя детьми, у которых ген ATG7 вообще не работал, а дети, между тем, были живы, хотя мозг их сформировался с аномалиями, они плохо контролировали движения тела и у них были проблемы с обучением. Затем исследователи обнаружили ещё несколько человек, у которых ATG7 был в той или иной степени повреждён и у которых были более или менее тяжёлые неврологические симптомы.

Когда присмотрелись к клеткам таких людей, оказалось, что аутофагия у них всё-таки идёт, хотя и не с такой интенсивностью, как должно быть в норме, с неиспорченным ATG7. Более того, тяжелее всего на нервной системе отражались не слишком значительные повреждения гена ATG7. Если же ATG7 был повреждён сильно, то клинические симптомы почему-то были мягче. Очевидно, в клетках человека есть страховочные системы, которые позволяют выжить при неработающем ATG7, поддерживая аутофагию на каком-то минимальном уровне.

И другой важный вывод, который тут можно сделать – это что у мышей такой страховочной системы нет. Для мышей мутации в ATG7 – действительно вопрос жизни и смерти, в намного большей степени, чем для человека, потому что люди без ATG7, хоть и с болезнями, но выживают.

Перед нами очень наглядный пример того, что результаты экспериментов, полученные на животных, нужно с осторожностью распространять на людей, даже если речь идёт о таких универсальных и жизненно важных биологических процессах, как аутофагия. Здесь, кстати, можно вспомнить одно исследование, когда удалось выяснить, что отсутствие многих генов, считающихся важными, вообще не сказывается на здоровье – возможно, многие из этих генов жизненно важны для мышей и крыс, но не для людей.
P.S. Несколько ссылок в дополнение:

http://my-army-flot.ru/index.php?topic=13.msg52#msg52
(про аутофагию немного, есть схема с пояснениями)

Как важные гены оказались неважными
https://www.nkj.ru/news/28358/
Отсутствие многих генов, считающихся важными, не сказывается на здоровье.

ArefievPV

  • Новичок
  • *
  • Сообщений: 1183
  • Карма: 0
    • Просмотр профиля
Re: Интересные новости и факты (биология, химия)
« Ответ #104 : 01 Августа 2021, 17:58:55 »
Эликсир молодости. Можно ли замедлить старение и каков предел жизни
https://ria.ru/20210801/starenie-1743497414.html
Цитировать
Ученые считают, что человек не может жить дольше 150 лет. Это обусловлено скоростью старения организма, на которую пока никак нельзя повлиять. Однако есть способы затормозить биологические часы.

Стеклянный потолок

Самому возрастному человеку на Земле, японке Канэ Танака, исполнилось 118 лет. Она живет в доме престарелых в городе Фукуока и практически не жалуется на здоровье. Но в общем списке супердолгожителей Танака лишь третья — после американки Сары Кнаусс (умерла в 119 лет) и француженки Жанны Кальман (122 года).

По расчетам международной команды геронтологов, абсолютный предел человеческой жизни — 120-150 лет. Они разработали модель возрастных изменений человеческого организма. В ее основе биологический маркер старения — концентрация форменных элементов крови: эритроцитов, тромбоцитов и лейкоцитов.

Проанализировав этот параметр и другие сведения о возрасте и здоровье почти полумиллиона человек (использовали данные из британского биобанка и американского долгосрочного исследования NHANES), ученые определили индикатор состояния человека — DOSI (dynamic organism state indicator, или показатель динамического состояния организма).

Он, как правило, увеличивается с рождения до 20 лет и не меняется примерно до 50 лет. Затем снова растет. При этом чем больше у человека болезней, тем выше DOSI. А значит, заключили авторы статьи, индикатор отражает скорость старения человека.

На DOSI влияют болезни и стрессы, но потом он, как правило, возвращается к значениям, характерным для возраста.


На рисунке кривая обозначает изменения показателя DOSI у здорового человека с течением времени. Пунктирная и сплошная стрелки — жизненные траектории двух случайных людей. По ним видно, что DOSI каждого конкретного человека может меняться в течение небольшого отрезка жизни из-за болезней или стрессов, но потом он, как правило, возвращается к значениям, характерным для возраста. К сожалению, с возрастом эта скорость уменьшается и чем старше человек, тем больше времени необходимо ему для стабилизации DOSI. Иными словами, с возрастом организму все сложнее справляться с внутренним и внешним стрессом. И когда он уже не может этого делать, наступает смерть.

Именно на скорости, с которой индикатор возвращается к прежнему уровню, и сосредоточились ученые. Значения DOSI изучили на выборке из четырехсот относительно здоровых россиян. Оказалось, что с возрастом скорость уменьшается и чем старше человек, тем больше времени необходимо для стабилизации. Иными словами, с годами организму все сложнее справляться с внутренним и внешним стрессом. И когда он уже не может этого делать, наступает смерть. По подсчетам, максимальный срок жизни — 120 лет.

Когда авторы статьи учли другие параметры — в частности, уровень физической активности (оценивался по фитнес-трекерам), предел увеличился до 150 лет.

Скорость не меняется

К похожим выводам пришли датские, американские и британские ученые, проанализировав таблицы смертности в человеческих популяциях и среди нескольких видов приматов. Выяснилось, что люди, как и животные, стареют с определенной скоростью, на которую практически невозможно повлиять.

Исследователи изучили данные по продолжительности жизни у шести видов приматов с разных континентов и у девяти популяций людей. Были выборки живших с XVII по XX век и две — современных охотников-собирателей. Установили, что чем дольше в среднем живут представители вида, тем синхроннее они умирают — примерно в одном возрасте. А значит, увеличение продолжительности жизни рано или поздно приведет приматов (в том числе и человека) к биологическому пределу.

Затем на основе полученных данных ученые построили компьютерную модель динамики смертности в каждой популяции. Изменения в ней таких параметров, как детская и фоновая смертность, не сильно влияли на продолжительность жизни. А вот скорость старения могла значительно изменить этот показатель.

"Авторы статьи смогли получить экспериментальные подтверждения так называемой гипотезы об одинаковой скорости старения, предполагающей, что в рамках одного вида живых организмов вероятность умереть в конкретном возрасте постоянна. Причем если поменять параметры модели для одних приматов, зависимость станет такой же, как и для другого вида. Все это говорит о том, что есть фундаментальные биологические ограничения на изменение скорости старения и еще неизвестно, смогут ли будущие достижения медицины их преодолеть", — пояснил в беседе с РИА Новости научный сотрудник Центра исследований молекулярных механизмов старения и возрастных заболеваний МФТИ Алексей Власов.

По словам ученого, насчитывается более сотни различных гипотез старения, однако в механизмах на молекулярном уровне еще много неясного.

"Мы в МФТИ упорно занимаемся проблемами старения именно с точки зрения молекулярных механизмов. Остановить процесс нереально, однако можно бороться с возрастными заболеваниями и как минимум улучшить качество жизни человека", — уточнил он.

Повернуть время вспять

Впрочем, два года назад американские ученые заявили, что им удалось повлиять на эпигенетические (незапрограммированные в ДНК) факторы старения. Правда, случайно. Хотели улучшить работу тимуса — органа иммунной системы, клетки которого с возрастом постепенно замещаются на жировую ткань. Для этого в течение года девяти добровольцам 51-64 лет давали коктейль из препаратов с гормонами роста и противодиабетических средств.

Как и ожидалось, в крови испытуемых выросло количество Т-лимфоцитов, производимых тимусом. Однако параллельно выяснилось, что за время эксперимента его участники в среднем помолодели на два года. Речь об эпигенетическом возрасте, который определяется по количеству метильных меток на ДНК. Чем их больше, тем старше человек и тем ближе он к смерти.

По оценкам ученых, в первые девять месяцев старение откатывалось обратно медленно, а потом омоложение ускорилось. Через полгода после завершения эксперимента его участники по-прежнему сохраняли новый биологический возраст.

P.S. Ссылки в дополнение:

Ученые обнаружили фактор преждевременного старения
https://ria.ru/20210617/starenie-1737469498.html

Геронтологи подтвердили гипотезу о неизменной скорости старения людей
https://nplus1.ru/news/2021/06/18/invariant-rate-aging

Создана система предсказания продолжительности жизни по анализу крови
https://ria.ru/20210712/starenie-1740943711.html

 

Сообщения