Мини Чат

vav: Ну вот, записался в диванные войска  :ae: 2022 May 13 00:39:18

aze1959: как то так 2022 Feb 13 13:48:06

HOOLIGAN-1105: Привет всем! :bq: 2022 Feb 09 19:09:23

Автор Тема: Интересные новости и факты (биология, химия)  (Прочитано 10317 раз)

ArefievPV

  • Новичок
  • *
  • Сообщений: 1185
  • Карма: 0
    • Просмотр профиля
Re: Интересные новости и факты (биология, химия)
« Ответ #195 : 13 Декабря 2022, 20:08:47 »
Образование аминокислот в метеоритах объяснили гамма-излучением
https://nplus1.ru/news/2022/12/13/gamma-alanin
Источником излучения мог быть радиоактивный изотоп алюминия
Цитировать
Японские ученые облучили водный раствор формальдегида, аммиака и метанола гамма-излучением и получили аминокислоты. Этот процесс мог происходить в хондритах или их родительских телах: в качестве источника гамма-излучения мог выступать радиоактивный изотоп алюминия 26Al, а весь процесс занял бы от одной до ста тысяч лет. Результаты исследования опубликованы в журнале ACS Central Science.

Углистыми хондритами называют метеориты из силикатной породы с вкраплением небольших частиц угля, графита, воды и соединений железа. В подобных метеоритах и их предполагаемых родительских телах уже были обнаружены сахара, аминокислоты и азотистые основания. Ученые предполагают, что доставленные такими метеоритами вещества могли сыграть важную роль в процессе химической эволюции на нашей планете. Но пока не до конца понятно, как именно сложные органические вещества появились в самих метеоритах или их родительских телах.

В прошлом году японские химики под руководством Йоко Кебукавы (Yoko Kebukawa) из Университета Йокогамы показали, что аминокислоты могут образовываться из формальдегида HCHO и аммиака NH3, но только в жидкой воде и при наличии источника энергии. Теперь Кебукава и ее коллеги решили проверить, могло ли таким источником энергии быть гамма-излучение, которое возникает при радиоактивном распаде изотопа алюминия 26Al, входящего в состав хондритной породы.

Ученые приготовили водный раствор формальдегида HCHO и аммиака NH3 с добавлением метанола (мольное соотношение H2O:NH3:HCHO:CH3OH было равно 100:6:8:1, близко к соотношению в реальных хондритах) и запаяли его в тонкие стеклянные трубочки. В качестве источника гамма-излучения использовали радиоактивный изотоп кобальта 60Co.

Ученые варьировали меняли интенсивность (от 0,5 до 20 килогрей в час) и время облучения (от 3 до 20 часов). Всего они провели тридцать экспериментов, и еще три образца оставили для контроля. Все полученные растворы обработали соляной кислотой, чтобы перевести аминокислоты из формы соответствующих амидов в форму кислоты.

Количество аминокислот определяли с помощью метода высокоэффективной жидкостной хроматографии. Альфа-аланин также выделили из смеси и проанализировали отдельно методом тандемной газовой хроматогмасс-спектрометрии (GC-MS), чтобы убедиться, что он находится в форме рацемата (эквимолярной смеси двух изомеров). Таким образом Кебукава и ее коллеги подтвердили, что аминокислоты не были занесены извне — в этом случае альфа-аланин находился бы в основном в форме L-изомера.

Больше всего в образцах было альфа-аланина — его концентрация доходила до полутора миллимоль на литр. Также среди продуктов были бета-аланин, глицин, альфа-аминомасляная кислота, бета-аминоизобутановая кислота и глутаминовая кислота.

Количество аминокислот оказалось прямо пропорционально общей дозе облучения, при этом не зависело от интенсивности облучения. Кебукаве и ее коллегам удалось превратить в аминокислоты до 0,14 процента всего содержащегося в растворе углерода — для этого потребовалась доза в 200 килогрей.

Авторы подсчитали, что начальное содержание радиоактивного изотопа алюминия 26Al в хондритной породе соответствует общей дозе радиации в 6300 килогрей — вполне достаточно для синтеза аминокислот. Например, для образования такого количества альфа-аланина и бета-аланина, которые были обнаружены в Мурчисонском метеорите, потребовалось бы от одной до ста тысяч лет.

Интересно что в Мурчисонском метеорите количества альфа-аланина и бета-аланина были очень близки ( 1,3 и 1.4 микрограмм на грамм породы соответственно), в то время, как в эксперименте Кебукавы и ее коллег альфа-аланина получилось примерно в десять раз больше. Авторы предложили такое объяснение: под действием гамма-излучения происходит не только образование, но и распад аминокислот. Альфа-аланин менее стабилен, поэтому при длительном облучении его доля в смеси снижается — особенно, если свободный формальдегид и аммиак закончились, и реакция синтеза аминокислот остановилась.

Два года назад мы писали о химических исследованиях Тагишского метеорита, в котором тоже нашли следы аминокислот. Результаты атомно-зондовой томографии показали, что частицы магнетита в его составе формировались в слабощелочной среде. Эти результаты хорошо объясняют, почему глутаминоваяи и аспаргиновая аминокислоты, обнаруженные в этом метеорите, в основном находились в L-форме.

Дело в том, что в водном растворе эти аминокислоты могут находиться D- и L-форме, но кристаллизуются обе преимущественно в L-форме. В растворе L-форма постоянно находится в недостатке, и равновесие смещено в сторону ее образования, а в щелочной среде процесс перехода между формами протекает быстрее, чем в кислой или нейтральной.

P.S. Ссылка в дополнение:

Тагишский метеорит оказался щелочным
https://nplus1.ru/news/2020/05/13/Tagish

ArefievPV

  • Новичок
  • *
  • Сообщений: 1185
  • Карма: 0
    • Просмотр профиля
Re: Интересные новости и факты (биология, химия)
« Ответ #196 : 30 Декабря 2022, 11:55:20 »
Инфузории выжили и размножились на вирусной диете
https://nplus1.ru/news/2022/12/29/virovore-food-chains
Динамика численности инфузорий и вирусов вписывается в модель «хищник-жертва»
Цитировать
Пресноводные инфузории Halteria sp. выжили и размножились на вирусной монодиете. Это может означать, что вирусы влияют на трофические цепи сильнее, чем считалось прежде. Статья опубликована в Proceedings of the National Academy of Sciences.

Ученые обычно смотрят на вирусы как на патогены, однако вирусы участвуют еще и в экосистемных процессах. Например, лизируют микроорганизмы, в результате чего высвобождаются питательные органические вещества. Эти вещества не съест планктон или рыба, однако их смогут съесть гетеротрофные бактерии — и таким образом они снова включатся в пищевые цепочки. Этот процесс называют вирусным шунтом.

Кроме того, вирусов много и они есть почти везде — поэтому и крупные животные, и невидимые глазу микроорганизмы могут поедать вирусы случайно — вместе с водой, частицами листьев и почвы. Считается, что вирусы, хоть и содержат аминокислоты и липиды, совсем некалорийны, и только в больших количествах (возможно) могут повлиять на динамику популяций видов, которые их едят. Но до сих пор не было известно ни о демографических последствиях такой диеты, ни о животных, которые могут выжить, питаясь только вирусами.

Исследователи из Университета Небраски в Линкольне под руководством Джона Делонга (John DeLong) обнаружили, что инфузория Halteria sp. может расти и размножаться только на вирусах, без других источников питания. Ученые поместили два вида растительноядных инфузорий — Halteria sp.и Paramecium bursaria — в чашки Петри и добавили туда же вирусный концентрат, содержащий живые хлоровирусы — патогены микроскопических зеленых водорослей. Затем они наблюдали, что будет происходить с популяциями простейших и с вирусами.

Популяция хальтерий, которых оставили в капле воды, где кроме вируса есть было нечего, за два дня выросла в 15 раз, а вирусов там стало в 100 раз меньше. В контрольной чашке без вирусов популяция Halteria не росла. Численность инфузорий Paramecium не увеличивалась ни с вирусами, ни без них. Затем ученые пометили вирусы флуоресцентным красителем: клетки Halteria через некоторое время тоже засветились.

Исследователи отмечают, что динамика численности Halteria и хлоровирусов согласуется с моделью трофического взаимодействия «хищник-жертва». Каждая гальтерия в эксперименте съедала примерно от 104 до 106 вирионов в день. Возможно, в небольшом пруду одна инфузория может потреблять до 1016 вирионов в день. Примерно 17 процентов съеденной массы преобразовалось в собственную массу инфузорий — это сравнимо со средними оценками для водного зоопланктона (от 10 до 30 процентов).

Результаты предполагают, что влияние вирусов на экосистемы выходит за рамки вирусного шунта: некоторые инфузории могут съедать достаточно вирусных частиц, чтобы стимулировать рост популяции на уровне, аналогичном росту простейших в целом. А дальше этих инфузорий может поглотить зоопланктон — то есть вирусы сами по себе могут быть источником энергии, которая распространяется вверх по пищевым цепям.

Совсем недавно ученые описали новую супергруппу одноклеточных хищных эукариот, которую назвали Provora — от латинского глагола «vorare» — пожирать. Эти микроорганизмы едят других одноклеточных эукариот, а живут в основном в соленой воде.
P.S. В дополнение:

Простейшие львы
https://nplus1.ru/material/2022/12/09/microlions
Как биологи отыскали новую супергруппу одноклеточных хищников

Такое впечатление, что многоклеточные организмы воспроизводят как поведенческий функционал, так и структурные особенности одноклеточных организмов, но в расширенном (на порядки) диапазоне вариативности.
 
Получается, что многое из того, что эволюционно появилось у одноклеточных организмов, затем возникает и у многоклеточных. Разумеется, найденные природой решения, изначально реализованные в одноклеточных организмах, в многоклеточных организмах воплощаются просто в гигантском количестве вариантов.

Само собой, множество природных изобретений/решений невозможно реализовать в одноклеточных (слишком проста/бедна элементная база), и такие изобретения/решения были реализованы сразу в многоклеточных организмах.

Кстати, возможно, некоторые изобретения/решения невозможно реализовать и в многоклеточном организме, а только в популяции/виде (как вариант, в социуме).

Про структурные особенности:

Одноклеточные водоросли построили сложный глаз из хлоропластов и митохондрий
http://elementy.ru/news/432523

ArefievPV

  • Новичок
  • *
  • Сообщений: 1185
  • Карма: 0
    • Просмотр профиля
Re: Интересные новости и факты (биология, химия)
« Ответ #197 : 07 Января 2023, 17:20:25 »
«А в действительности всё не так, как на самом деле!»
https://www.nkj.ru/news/47268/
Некоторые научные результаты прошлого года хочется вспомнить ещё раз потому, что они противоречат разным гипотезам и теориям, которые успели прочно укорениться как в науке, так и в общественном мнении.
Цитировать
«А в действительности всё не так, как на самом деле!» — афоризм польского поэта и писателя Станислава Ежи Леца. Афоризм на самом деле на все случаи жизни, но мы сейчас о науке. Нередко в науке появляются гипотезы, которые приобретают несколько преждевременную популярность. С их помощью начинают объяснять, как «на самом деле» обстоят дела в той или иной области, и в пользу этих гипотез накапливается всё больше и больше данных. Пока в какой-то момент не оказывается, что данные накапливались как-то не так, либо же накопленные данные как-то не так анализировали, либо же исследователи натыкаются на какой-то феномен, из-за которого всё, чтобы было сделано до сих пор, приходится пересматривать. В общем, вместо «самого дела» приходит «действительность». Хотя и новая «действительность» не обязательно оказывается такой уж незыблемой — афоризм работает в обе стороны.

Один из самых выдающихся примеров здесь — это связь между серотонином и депрессией. Причину депрессии чаще всего видят в том, что у мозга есть проблемы с серотонином — его в качестве нейромедиатора используют нейронные центры, от которых зависит хорошее настроение. То ли серотонина мало синтезируется, то ли он быстро разрушается, то ли плохо работают рецепторы, которые должны на него реагировать — так или иначе, всё сводится к тому, чтобы повысить его уровень в нейронах и межнейронных соединениях-синапсах; именно так работают (или, по крайней мере, должны работать) большинство антидепрессантов.

Между тем до сих пор нет убедительных доказательств в пользу того, что серотонин имеет какое-то отношение к депрессии. Об этом в прошлом году в Molecular Psychiatry писали сотрудники Университетского колледжа Лондона. Сама статья представляет собой так называемый зонтичный обзор — то есть сравнительный обзор других обзорных трудов, а также мета-аналитических статей на определённую тему; в данном случае — на тему серотонина и депрессии. На всякий случай уточним, что мета-анализом называют специальное исследование, в котором пытаются понять, как согласуются друг с другом результаты многих наблюдений и экспериментов, нет ли между ними противоречий, не преувеличиваем ли мы значение некоторых из них, и можно ли с их общей помощью подтвердить (или опровергнуть) ту или иную гипотезу. Ну а зонтичный обзор — это обзор обзоров и мета-анализ мета-анализов.

Для обзора по серотонину и депрессии взяли все более или менее значимые работы из всех возможных биомедицинских областей науки. И оказалось, что если сравнивать уровень серотонина или уровень продуктов его распада в крови или в жидкостях мозга у людей с депрессией и у людей без депрессии, то разницы между ними никакой не будет. Связь между депрессией и состоянием рецепторов к серотонину или транспортных белков, которые с ним работают, оказалась довольно слабой, и результаты исследований здесь часто бывают противоречивыми.

Часто ссылаются на эксперименты, в которых людей на время специально сажали на такую диету, из-за которой у них падал уровень серотонина. Но большинство таких экспериментов показало, что у здоровых людей депрессия от понижения серотонина не начинается. В одном случае таким способом как будто удалось увидеть связь между депрессией и серотонином, но в том исследовании участвовало слишком мало добровольцев, и среди них были те, у кого депрессия записана в семейной медицинской истории, и впоследствии результаты опять же не подтвердились.

Другой подход — искать статистическую связь между депрессией и генами, так или иначе связанными с серотонином. Однако и здесь не получилось найти соответствий между вариантами генов, которые снижают уровень серотонина, и вероятностью депрессии. Кстати, это не такая уж и новость: несколько лет назад мы писали про другое исследование, в котором говорилось, что два десятка известных «депрессивных генов» оказались связаны с депрессией не более, чем любые другие гены. Кстати, часто сюда добавляют влияние среды, то есть человек с «депрессивным геном», столкнувшись с жизненными проблемами, с большей вероятностью свалится в депрессию. Однако и такая тройная связь впоследствии не подтвердилась.

Возникает вопрос, как быть с утверждением, что серотонин нужен для нервных центров хорошего настроения. Ну, возможно, мы здесь поторопились с выводами, и хорошее настроение — штука намного более сложная, чем кажется. Тут, кстати, можно вспомнить о том, что серотониновые антидепрессанты срабатывают далеко не всегда. А про сам серотонин, который часто называют гормоном счастья, мы несколько лет назад писали, что он вместо счастья может подарить ту самую депрессию — всё зависит от того, на какие нейроны он подействует. Вообще, насчёт антидепрессантов не всегда понятно, как именно они работают; среди них есть такие, про которые говорят, что они вообще никак не влияют на серотонин, но зато стимулируют формирование новых синапсов.

Наконец, дело может быть и не в химии. Хотя среди обычных людей большинство уверены в том, что причина депрессии в «химическом дисбалансе мозга», многие специалисты в последнее время всё чаще говорят, что представлять депрессию как сугубо химическую проблему — это сильно упрощать ситуацию. Сами авторы работы полагают, что их результаты помогут изменить взгляд на депрессию, причины которой могут быть не только в «химическом дисбалансе», но и в постоянном стрессе, одиночестве и бедности.

Другой пример, тоже из области психологии и нейробиологии, это вопрос о надёжности нейропсихологических экспериментов с МРТ-сканированием. Львиная доля исследований человеческого мозга выполняется с использованием магнитно-резонансной томографии. Экспериментаторы приглашают какое-то количество добровольцев в лабораторию и сканируют им мозг — либо для того, чтобы узнать какие-то постоянные структурные особенности мозговых центров, либо для того, чтобы увидеть, как меняется активность тех или иных центров в зависимости от когнитивной задачи. И когда мы рассказываем про результаты таких исследований, то обычно добавляем, что полученные результаты нужно будет проверить на большем числе подопытных. Мы повторяем это настолько часто, что «большее число подопытных» начинает восприниматься просто как ритуальное заклинание, на которое можно закрыть глаза.

То, что это не просто ритуальное заклинание, говорится в статье в Nature, которую опубликовали сотрудники Вашингтонского университета в Сент-Луисе. Всё началось с того, что они попытались воспроизвести собственные результаты. Исследователи пытались выяснить, как связаны когнитивные особенности с некоторыми структурными особенностями мозга, и на примере тысячи детей им удалось обнаружить определённое соответствие. Но когда это соответствие попробовали увидеть на другой тысяче детей, то у тех ничего такого не оказалось.

Тогда авторы работы обратились к трём большим базам данных, в которых в сумме хранились результаты МРТ-сканирования примерно 50 тыс. человек, и начали перепроверять самые разные корреляции на большем количестве материала. То есть они, например, брали некую связь между данными МРТ и психологическими особенностями, обнаруженную на примере двадцати пяти человек, и пытались найти ту же связь на примере тысячи, двух, трёх, десяти и т. д., чьи данные были в базах.

Оказалось, что достаточно надёжными подобные исследования становятся тогда, когда в них анализируют данные порядка тысяч человек. То есть когда мы делаем выводы, опираясь на МРТ-сканирование тысячи, или двух тысяч, или трёх тысяч добровольцев, то наши результаты с высокой вероятностью подтвердятся и на других людях. Если число участников исследования будет меньше, то наши результаты, скорее всего, имеют смысл только для этих людей. В качестве примера авторы работы приводят данные о том, как связанность различных мозговых центров влияет на когнитивные особенности: если анализировать на двадцати пяти добровольцах, то такое влияние однозначно будет сильным, или, наоборот, мы увидим вообще отсутствие какой-либо связи между тем и другим. И только на тысяче человек станет видно, что связь между когнитивными особенностями и характером межцентровых соединений на самом деле есть, но очень слабая.

При этом в большинстве подобных исследований участвует около двух десятков человек. В некоторых случаях небольшая статистика вполне допустима: например, когда вы изучаете влияние определённой мутации на мозг, вы вполне можете обойтись малым числом людей, у которых есть такая мутация. Но если, скажем, речь об аутизме, который развивается по самым разным причинам, и не только генетическим, то тут нужно либо очень тщательно подбирать малую группу добровольцев, либо всё же использовать как можно больше данных. Вообще проблема воспроизводимости результатов, полученных на небольшом числе добровольцев, касается не только нейробиологии. Какое-то время назад нечто похожее происходило и в генетике, пока там не накопились десятки и сотни тысяч прочитанных индивидуальных геномов.

И ещё здесь обязательно нужно упомянуть о разнообразной научно-популярной литературе, где порой не просто рассказывают об устройстве мозга, но и описывают закономерности нашего поведения, дают какие-то психологические советы и т. д. Не всегда в такого рода литературе сообщают подробности тех исследований, на основании которых мы выслушиваем все эти советы. С учётом всего вышесказанного про МРТ-исследования стоит помнить, что популярные советы, опирающиеся на «новейшие нейробиологические данные», далеко не всегда имеют хоть какой-то смысл.

Продолжим о мозге — точнее о том, можно ли увеличить мозг медитацией. Нейробиологи и психологи активно изучают медитацию на предмет её лечебных свойств: считается, что медитация помогает против депрессии, тревожности, стресса и даже против хронических болей. Есть эксперименты, которые подтверждают пользу от медитации. Более того, некоторые исследователи утверждают, что благодаря медитации в мозге происходят структурные изменения и что достаточно регулярно медитировать два месяца, чтобы в зонах мозга, отвечающих за память и эмоции, стало больше серого вещества (то есть коротких нейронных отростков-дендритов).

Однако в подобных исследованиях, во-первых, участвуют не очень много людей, в лучшем случае десяток-другой, а во-вторых, в них состояние мозга после медитации сравнивают только с состоянием мозга без медитации. Это называют отрицательным контролем: эффект от воздействия сравнивают с отсутствием воздействия. Но ведь может быть и так, что изменения, которые происходят с мозгом, на самом деле к медитации не имеют отношения — просто мозг занялся чем-то новым, и в нём стало больше серого вещества. То есть мозг, занявшийся медитацией, нужно сравнивать с мозгом, который занялся чем-то другим.

Именно так поступили сотрудники Висконсинского университета в Мадисоне. В их экспериментах участвовало более семидесяти человек, которых делили на три группы. Первая группа регулярно практиковала так называемое снижение стресса на основе осознанности (MBSR), один из главных компонентов которого — медитация осознанности; именно MBSR, по некоторым данным, делает серое вещество более объёмным и одновременно более плотным. В другой группе занимались музыкальной терапией, физическими упражнениями и здоровым питанием. В третьей группе не занимались ничем, но обещали, что они скоро займутся либо снижением стресса на основе осознанности, либо музыкальной терапией и пр.

Оказалось, что за два месяца ни у кого не появилось каких-то заметных отличий — медитация и музыкальная терапия с упражнениями влияли на серое вещество не больше, чем обычная жизнь. Это не значит, что медитация не помогает против стресса и депрессии — она вполне может помогать, только для того, чтобы помочь, не нужно наращивать серое вещество ни в зонах памяти, ни в зонах эмоций, ни где-либо ещё.

На самом деле, медитация, может, и способна произвести структурные изменения в мозге, но для этого нужно больше времени и усердия. Наш мозг пластичен, его нейроны и нейронные цепи подстраиваются под задачи, с которыми человек имеет дело постоянно. Но 24–30 часов практики осознанности, размазанные по двум месяцам — этого, пожалуй, слишком мало, чтобы увеличить долю серого вещества. То есть в целом тут речь идёт не столько о медитации, сколько о том, как её изучать: корректно планируя эксперимент, мы счастливо избежим напрасных сенсаций.

Можно ли получить опухоль мозга, разговаривая по мобильному телефону? Это до сих пор остаётся неубиваемой темой в околонаучных разговорах, которая заново воскресает каждый раз, как нам сообщают об очередном шаге вперёд в телекоммуникациях. В 2011 году Международное агентство по изучению рака сообщило, что сотовые телефоны могут провоцировать опухоли мозга, однако большинство медико-эпидемиологических исследований, выполненных впоследствии, это не подтвердили, и мобильники признали безопасными. Но если есть «большинство» исследований, то есть и «меньшинство» — с другими результатами? Другие результаты часто связаны с тем, что для анализа берут медицинские истории людей, у которых уже есть онкологический диагноз. Это так называемые ретроспективные исследования, и их проблема в том, что они ищут там, где светло: в мире в принципе больше тех, кто пользуется мобильными телефонами, чем тех, кто не пользуется. Догадайтесь, кого из них будет больше среди тех, у кого нашли опухоль мозга.

Иначе поступили авторы работы, опубликованной в прошлом году в Journal of the National Cancer Institute: они выполнили проспективное исследование, в котором анализировали, появится ли в будущем опухоль у изначально здоровых людей. Для анализа использовали медицинские данные примерно 776 тыс. женщин, родившихся между 1935 и 1950 гг. В 2001 году они заполнили специальные анкеты, чтобы можно было оценить, насколько активно они пользуются своими мобильниками, в смысле, насколько активно они разговаривают по мобильной связи, когда телефон или смартфон прижимаешь к голове. (Хотя у нас у всех бывают разные дни в смысле социальной насыщенности, но всё-таки каждый может оценить, сколько раз в день в среднем он или она говорит по телефону, как долго в среднем длится разговор, и т. д.) Половину из тех, кого опрашивали в 2001 году, опросили на ту же тему сотовой активности ещё раз в 2011, чтобы понять, случились ли здесь какие-то изменения. И вот эти данные сопоставили с медицинскими сведениями, которые охватывали ещё четырнадцать лет после второго «сотового» опроса.

В целом опросы показали, что среди пожилых женщин достаточно тех, кто не говорит по мобильной связи (например, среди тех, кому в 2011 было от 60 до 64, не разговаривающих по мобильникам оказалось 25%). За четырнадцать лет после 2011 г. из всех них только у 0,42% появились опухоли мозга — и никакой связи с мобильниками не было: у тех, кто ими пользовался, опухоли появлялись с той же вероятностью, что и у тех, кто ими не пользовался. В этом смысле не было никаких отличий, связанных с видом опухоли или её расположением, то есть опухоли в височных частях мозга возникали не чаще, чем в каких-либо других, если опять же рассматривать их в связи с разговорами по мобильнику.

Правда, стоит уточнить, что из тех, чьи данные анализировали в исследовании, только 18% разговаривали по телефону больше получаса в неделю. Так что тут ещё предстоит исследовать каких-нибудь особых мобильных говорунов, которые готовы разговаривать часами, причём каждый день. В то же время с развитием мессенджеров найти достаточно количество таких людей будет наверняка непросто. Ещё хорошо бы включить в будущие исследования мужчин. Что касается возраста, то злокачественные опухоли всё-таки чаще развиваются у пожилых, чем у молодых, и, кроме того, связь между опухолями мозга у детей и подростков на самом деле уже искали — и пришли и тем же результатам, что и сейчас.

ArefievPV

  • Новичок
  • *
  • Сообщений: 1185
  • Карма: 0
    • Просмотр профиля
Re: Интересные новости и факты (биология, химия)
« Ответ #198 : 07 Января 2023, 17:21:38 »
Продолжение.
Цитировать
Тестостерон давно ославлен как гормон агрессии. Все знают, что повышенный тестостерон — это агрессия, драки, антисоциальное поведение и прочее в том же роде. Вообще, тестостерон нужен в первую очередь для формирования и функционирования мужской половой системы, но у него есть и поведенческие эффекты, которые становятся особенно заметны при повышенном уровне гормона. Речь даже не столько о человеческой психологии — проведено множество экспериментов с животными, в которых повышенный тестостерон делает самцов (и самок) весьма малоприятными субъектами.

Однако в прошлом году в Proceedings of the Royal Society B вышла статья о том, что тестостерон может делать самцов не только более агрессивными, но и более дружелюбными. Опыты ставили с монгольскими песчанками, которые формируют постоянные брачные пары и вместе воспитывают потомство. Самцы песчанок активно защищают свою территорию от чужаков и довольно агрессивны в период спаривания, но с беременными самками и с детёнышами они ведут себя совсем иначе.

Когда самцу, у которого уже была беременная подруга, вводили добавочную порцию тестостерона, он не становился агрессивным — он становился ещё более любящим, более ухаживающим; можно сказать, из просто хорошего супруга он превращался в идеального. Через неделю самку на время пересаживали от её «тестостеронового» мужа, а на её место подсаживали другого самца. Обычно в такой ситуации хозяин клетки или будет гонять второго самца по своей территории или, в крайнем случае, постарается с ним не пересекаться. Но «тестостероновый» самец вёл себя по отношению к чужаку намного более дружелюбно, чем можно было ожидать. Однако если ему вводили ещё одну порцию тестостерона, к нему возвращалось привычное агрессивное (или избегающее) поведение.

Первая доза тестостерона не просто настраивала самца на семейно-романтический лад по отношению к конкретной самке — самец в целом становился более социально-толерантным. Вторая доза всё меняла: самец начинал вести себя так, как мы обычно ждём при повышенном уровне тестостерона. Если представить себе монгольских песчанок в их естественной среде обитания, то всплески тестостерона будут зависеть от собственного организма самца: уровень гормона повышается в период размножения, что только укрепляет семейные социальные связи, если же в норе появляется чужак, новый всплеск тестостерона поможет отвлечься от социально-семейных ценностей и прогнать его. Но тогда получается, что тестостерон не столько стимулирует агрессию, сколько помогает переключаться между разными режимами поведения, просоциальным и агрессивным антисоциальным. Получается, что его эффект зависит от социального контекста. И это не первый раз, когда действие тестостерона увязывают с социальным контекстом. Например, несколько лет назад о чём-то похожем сообщали психологи из Университета Эразма Роттердамского, и речь шла тогда не о грызунах, а о людях — исследователи пришли к выводу, что «гормон агрессивности» в некоторых условиях способствует сотрудничеству.

Есть ещё один гормон, который даёт два противоположных поведенческих эффекта — это окситоцин, «гормон любви». Довольно долго считалось, что он повышает социальность, усиливает привязанность, стимулирует чувства любви, дружбы и т. д., пока не выяснилось, что он может также вызывать агрессию. И как именно он подействует в конкретном случае, зависит опять же от социального контекста. Кстати, «окситоциновые» и «тестостероновые» нейронные цепи в мозге отчасти перекрываются, и на примере тех же монгольских песчанок было решено проверить, не влияет ли уровень тестостерона на уровень окситоцина. Оказалось влияет: у самца, которому вводили тестостерон перед общением с самкой, повышался уровень окситоцина; можно сказать «гормон агрессии» играл в пользу «гормона любви».

Что до людей, то люди, конечно же, не песчанки. Но если уж у песчанок «гормон агрессии» ведёт себя настолько непросто, можно представить, насколько всё сложно может оказаться с тестостероном в мозге человека.

И последнее, про лекарственно-устойчивых бактерий. Здесь мы все уже крепко выучили, что они возникают из-за того, что мы злоупотребляем антибиотиками, особенно в животноводстве. Действительно, тут всё кажется интуитивно понятным, если не забывать о теории эволюции: антибиотики — тот же фактор среды, который вычищает из популяции всех неприспособленных; соответственно, среди бактерий остаются те, кто умеет противостоять антибиотикам, те, у кого появляются нужные мутации, а то и целые гены.

Однако не стоит забывать, что антибиотики — это природные (или, если угодно, натуральные) молекулы: их придумали не люди, их издавна использовали друг против друга различные микроорганизмы. Бактерии и грибы активно воюют друг с другом, и антибиотики — одно из распространённых средств борьбы. Конечно, люди могут подсмотреть молекулу антибиотика у какого-нибудь грибка, а потом её усовершенствовать, но исходная молекула возникла в природе довольно давно. А раз так, и то и устойчивость к антибиотикам должна была время от времени возникать у бактерий ещё в доантибиотиковую эру — то есть до того, как их стали активно использовать в медицине.

В этом смысле не стоит так уж удивляться статье, появившейся в январе прошлого года в Nature: в ней говорилось о лекарственно-устойчивом штамме золотистого стафилококка, которого нашли на ежах и который стал лекарственно-устойчивом около двухсот лет назад. Этот штамм можно найти у 60% ежей в Швеции и Дании, да и на ежах из других регионов Европы и из Новой Зеландии он тоже попадается довольно часто. Исследователи полагают, что причиной тому грибок Trichophyton erinacei, который тоже живёт на коже ежей: грибок выделяет антибиотик, и стафилококк может ужиться рядом с ним, только если будет антибиотикоустойчивым. Сравнивая гены лекарственной устойчивости у ежовых бактерий, можно узнать, когда эти гены впервые появились. Авторы работы пришли к выводу, что штамм стафилококка живёт на ежах где-то с XIX в., когда медицина ни о каких антибиотиках даже не ведала. У людей его впервые обнаружили в 1960 году, и вполне вероятно, что «человеческий» штамм — это штамм с ежей.

Но здесь всё-таки стоит уточнить, что ежовый штамм встречается в одном случае из двухсот, когда у человека случается инфекция с лекарственно-устойчивым стафилококком. Ежи ежами, но всё-таки распространение антибиотиков играет большую роль в эволюции бактерии — разнообразием и широким распространением лекарственно-устойчивых штаммов мы обязаны нашему собственному увлечению лекарствами. Тут заодно можно вспомнить ещё одну прошлогоднюю статью про «супербактерий», на этот раз в Nature Microbiology. В ней говорится, что лекарственно-устойчивые разновидности бактерий рода Klebsiella приходят к людям от других людей. А вот «супербактерии» сельскохозяйственного происхождения, которые появляются на фермах, где животным в качестве профилактики дают большие количества антибиотиков, по-видимому, так с животными и остаются.

Общий вывод, который можно сделать из двух статей, состоит в том, что, во-первых, возникновение устойчивых микробов — это не какое-то инновационное наказание человечеству за его грехи перед природой, а во-вторых, «супербактериальные» инфекции могут возникать не столько из-за фермеров с антибиотиками, сколько из-за проблем с больничной санитарией.

P.S. Ссылки на информацию, о которой упоминается в статье:

Серотонин отделяют от депрессии
https://www.nkj.ru/news/44896/
Несмотря на всеобщую веру в то, что депрессия возникает из-за проблем с серотонином, доказательств этому почти нет.

«Депрессивные гены» подвергают сомнению
https://www.nkj.ru/news/35925/
Почти два десятка известных «депрессивных генов» оказались связаны с депрессией не более, чем любые другие.

«Гормон счастья» может вызывать депрессию
https://www.nkj.ru/news/27599/
Психологический эффект серотонина зависит от того, на какие нейроны он подействовал.

Антидепрессанты исправляют депрессивную эпигенетику
https://www.nkj.ru/news/27424/
Причина затяжной депрессии может быть в том, что антистрессовые гены не могут начать работать из-за «усыпляющих» эпигенетических меток на их ДНК.

Нейробиологическим исследованиям для надёжности не хватает данных
https://www.nkj.ru/news/43598/
Чтобы результаты нейропсихологических экспериментов с МРТ-сканированием имели смысл для всех людей, в них должно участвовать порядка тысяч добровольцев.

Можно ли увеличить мозг медитацией
https://www.nkj.ru/news/43942/
Влияние медитации осознанности на серое вещество мозга сильно преувеличено.

Мобильные телефоны не связаны с опухолями мозга
https://www.nkj.ru/news/43645/
Разговоры по сотовому никак не влияют на вероятность рака мозга — по крайней мере, среди пожилых женщин.

Тестостерон помогает дружить
https://www.nkj.ru/news/45025/
Действие «гормона агрессии» зависит от социального контекста.

Помогает ли тестостерон в спорте?
https://www.nkj.ru/news/25270/
В спортивных состязаниях тестостерон может разве что укрепить волю к победе и поднять ваш статус в глазах других игроков команды.

«Гормон любви» вызывает агрессию
https://www.nkj.ru/news/38982/
Социальный эффект гормона-нейромедиатора окситоцина зависит от социального контекста.

Лекарственно-устойчивые бактерии появились раньше лекарств
https://www.nkj.ru/news/43172/
На ежах живёт бактерия, устойчивая к антибиотикам, и появилась она ещё в XIX веке.

Супербактерии приходят к людям от других людей
https://www.nkj.ru/news/46792/
а супербактерии животных, по-видимому, остаются с животными.

ArefievPV

  • Новичок
  • *
  • Сообщений: 1185
  • Карма: 0
    • Просмотр профиля
Re: Интересные новости и факты (биология, химия)
« Ответ #199 : 18 Января 2023, 10:07:32 »
Российский ученый открыл новый механизм хранения информации в ДНК
https://news.rambler.ru/science/50044506-rossiyskiy-uchenyy-otkryl-novyy-mehanizm-hraneniya-informatsii-v-dnk/
Цитировать
Более 70 лет считалось, что ДНК содержит и обрабатывает информацию за счет характерной структуры двойной спирали. Однако последние изыскания показали, что эти процессы могут протекать и в других конфигурациях генетических цепочек. ДНК может хранить и передавать информацию за счет слабоаффинных взаимодействий, реализующихся в том случае, когда молекулы имеют низкое сродство друг к другу. Более того, короткая ДНК, даже максимально некомплементарная гену, может регулировать его работу.

«Я обратил внимание на необычное свойство ДНК, которое ровно 70 лет оставалось незамеченным — в тени красоты двойной спирали, — рассказал Максим Никитин. — А именно на то, что для любой одноцепочечной ДНК (оцДНК) существует великое множество других оцДНК с практически любой наперед заданной аффинностью — свойство, которое я назвал „континуумом аффинностей ДНК“».

ArefievPV

  • Новичок
  • *
  • Сообщений: 1185
  • Карма: 0
    • Просмотр профиля
Re: Интересные новости и факты (биология, химия)
« Ответ #200 : 18 Января 2023, 21:54:14 »
Российский ученый открыл новый механизм хранения информации в ДНК
https://news.rambler.ru/science/50044506-rossiyskiy-uchenyy-otkryl-novyy-mehanizm-hraneniya-informatsii-v-dnk/
Не в оригинале, а просто в более подробной статье на русском языке (https://siriusuniversity.ru/media/news/rossiiskii-uchenii-otkril-novii-fundamentalnii-mehanizm-hraneniya-informatsii-v-dnk) приводятся некоторые любопытные сведения (процитирую чуток):
Цитировать
Для того, чтобы доказать, что ДНК может образовывать наборы молекул с практически любыми наперед заданными взаимными аффинностями, в своей статье Максим Никитин показывает экспериментальную реализацию большого разнообразия систем, которые по-разному обрабатывают информацию, начиная с систем, включающих всего 3 суперкоротких олигонуклеотида длиной в 7 азотистых оснований, до ячеек памяти, систем вычисления квадратного корня и др. При этом компьютерное моделирование явления коммутации продемонстрировало устойчивую обработку информации и системой, состоящей из 1000 олигонуклеотидов. Это позволяет создать 572-битную ячейку обработки информации, что превосходит битность всех существующих электронных компьютеров. Примечательно, что предложенная Никитиным модель концептуально вообще не имеет ограничения по числу взаимодействующих таким образом олигонуклеотидов.
Цитировать
Кроме того, открытое Никитиным явление позволило ему экспериментально показать и другой удивительный, не укладывающийся в современную парадигму молекулярной биологии факт: любая неструктурированная одноцепочечная ДНК может специфично регулировать экспрессию заданного гена безотносительно их взаимной комплементарности. Все зависит от наличия в среде или организме других олигонуклеотидов (также некомплементарных).

Более того, автор показал, что молекулярная коммутация дает возможность лучше управлять экспрессией генов. Если в рамках стандартной парадигмы комплементарный механизм регуляции допускает приблизительно 1012 вариантов регулирования генов (в таком случае существует всего 420=1012 разных 20-нуклеотидных олигонуклеотидов), то Никитин показал, что используя те же 20-нуклеотидные последовательности, можно реализовать не менее 10172 вариаций регуляции работы гена. Это число значительно превосходит количество элементарных частиц во Вселенной, которых «всего» 1080!
Цитировать
Необходимо отметить, что в молекулярной коммутации могут участвовать не только нуклеиновые кислоты. Белки и малые молекулы также могут взаимодействовать по этому принципу, просто предсказать их взаимные аффинности в настоящее время, к сожалению, все еще очень сложно.

ArefievPV

  • Новичок
  • *
  • Сообщений: 1185
  • Карма: 0
    • Просмотр профиля
Re: Интересные новости и факты (биология, химия)
« Ответ #201 : 22 Января 2023, 14:02:45 »
Иммунные клетки живут дольше своих хозяев
https://www.nkj.ru/news/47422/
Мышиные Т-лимфоциты способны прожить в четыре раза дольше самой мыши, почти не теряя в своих иммунных способностях.
Цитировать
Когда иммунные клетки сталкиваются с болезнью, они начинают делиться — понятно, что чем больше иммунных клеток, тем быстрее они справятся с проблемой. Потом часть их остаётся жить с памятью о болезни; если это была, например, вирусная инфекция, иммунные клетки запоминают белки того вируса, с которым они боролись. Если тот вирус снова появится в организме, клетки, которые его запомнили, быстро его узнают и начнут размножаться. Но как долго могут жить такие клетки?

Исследователи из Университета Миннесоты трижды с интервалом в два месяца вводили мышам вирус, на который должны были отреагировать Т-лимфоциты. Они и реагировали, начиная активно делиться и одновременно запоминая определённый вирусный белок. Спустя какое-то время Т-лимфоциты, которые запомнили этот белок, пересаживали другим мышам. Пересаженные Т-клетки опять побуждали к делению, вводя мышам тот самый вирусный белок, который иммунные клетки должны были помнить. Затем всё снова повторялось: эксперимент длился десять лет (то есть в четыре раза дольше, чем живёт обычная мышь), клетки пересаживали шестнадцать раз, а на иммунный ответ их провоцировали пятьдесят один раз — то есть пятьдесят один раз Т-лимфоцитам показывали вирусный белок, который они запомнили несколько поколений назад.

В статье в Nature говорится, что спустя шестнадцать пересадок Т-лимфоциты продолжали очень хорошо помнить исходный вирус (точнее, его белок) и очень хорошо размножались, когда снова сталкивались с ним. Если отсчитывать от их исходной популяции, то окажется, что Т-лимфоциты способны увеличить свою численность в 1040 раз. Исследователи особо подчёркивают, что среди этих Т-клеток не было никаких молодых пришельцев, все они были потомками самой первой популяции лимфоцитов, которые впервые познакомились с вирусом у самых первых мышей. Сами по себе иммунные клетки не были склонны к безудержному делению: чтобы они начали размножаться, нужен был иммунный сигнал, то есть они должны были наткнуться на вирусный белок. Через какое-то время клетки успокаивались и переставали делиться; каких-либо злокачественных признаков у них не появлялось.

Со временем у Т-лимфоцитов появлялись определённые молекулярные признаки утомления жизнью. Но, во-первых, свою работу они продолжали делать, а во-вторых, эти признаки утомления не шли ни в какое сравнение с той дряхлостью, которую демонстрируют Т-клетки, стареющие вместе с хозяином. Вероятно, оставаться работоспособными им мешает общее старение организма, сами же по себе они способны жить и работать чрезвычайно долго. Какие механизмы тут работают, ещё предстоит выяснить.

Известно, что у Т-клеток работает собственная теломераза — фермент, удлиняющий теломеры, концевые участки хромосом, от которых во многом зависит продолжительность жизни клетки. Недавно мы писали, что Т-лимфоциты могут продлевать себе жизнь ещё и с помощью чужих теломер, которыми с ними делятся другие клетки. Но, возможно, у Т-лимфоцитов есть ещё какие-то секреты, позволяющие им столь долго жить и размножаться в подходящих условиях. Исследователи, конечно, приложат все усилия, чтобы эти секреты узнать — потенциальная практическая польза от естественного долгожительства иммунных клеток абсолютно очевидна.

P.S. Ссылка в дополнение:

Иммунные клетки живут чужой жизнью
https://www.nkj.ru/news/45227/
Т-лимфоциты могут становиться моложе с помощью ДНК, которую им дают другие иммунные клетки.

ArefievPV

  • Новичок
  • *
  • Сообщений: 1185
  • Карма: 0
    • Просмотр профиля
Re: Интересные новости и факты (биология, химия)
« Ответ #202 : 23 Января 2023, 17:46:15 »
Проблема гомологии конечностей: от щупалец кораллов до крыльев насекомых
https://elementy.ru/novosti_nauki/434059/Problema_gomologii_konechnostey_ot_shchupalets_korallov_do_krylev_nasekomykh
Цитировать
Какое отношение друг к другу имеют конечности разных животных? Есть ли у них что-то общее со щупальцами, которыми добывают пищу разные беспозвоночные? А крылья насекомых — это конечности или нет? Академик Владимир Васильевич Малахов и его коллега Михаил Маркович Ганцевич опубликовали статью о происхождении и путях эволюции двусторонне-симметричных животных (билатерий), в которой особое внимание уделено проблеме происхождения конечностей. Приведены доводы за то, что конечности членистоногих (и, судя по современным данным — даже крылья насекомых) произошли в конечном счете от щупалец далекого предка билатерий, который был похож на кораллового полипа.

ArefievPV

  • Новичок
  • *
  • Сообщений: 1185
  • Карма: 0
    • Просмотр профиля
Re: Интересные новости и факты (биология, химия)
« Ответ #203 : 23 Января 2023, 18:03:27 »
Зрение рака-богомола
https://elementy.ru/kartinka_dnya/1673/Zrenie_raka_bogomola
Цитировать

На фото — глаза павлиньего рака-богомола (Odontodactylus scyllarus), которого мы уже знаем по суперспособности разбивать твердые панцири добычи с помощью силы булавы и кавитационных пузырьков (см. картинку дня Сокрушающая ногочелюсть). Это ротоногое ракообразное обладает также превосходным зрением. От такого охотника никакой добыче не спрятаться.

Глаза сферической формы располагаются на подвижных стебельках (см. картинку дня Незаменимые глазные стебельки) и двигаются независимо друг от друга. Поэтому угол обзора очень большой. Каждый глаз состоит из десятков тысяч ячеек — омматидиев, структурных и функциональных единиц фасеточного глаза. По центру каждый глаз разделен на спинное и брюшное полушарие экваториальной средней полосой из шести рядов увеличенных омматидий. Таким образом получается, что каждый глаз видит три картинки — в общей сложности получается шесть.


Глаз павлиньего рака-богомола крупным планом: DH — спинное полушарие, MB — средняя полоса, VH — брюшное полушарие. Длина масштабного отрезка — 800 мкм. Фото из статьи Tsyr-Huei Chiou et al., 2008. Circular Polarization Vision in a Stomatopod Crustacean

Черные вертикальные полосы, заметные на главном фото, создаются фасетками глаза, которые смотрят прямо на наблюдателя. По ним можно увидеть, что зрение смотрящего и вправду тринокулярное.

Верхнее и нижнее полушарие глаза воспринимают форму объектов и их движение. Первые четыре ряда средней полосы обрабатывают цветовые сигналы, а последние два чувствительны к поляризованному свету. У павлиньего рака-богомола 12 типов фоторецепторов, воспринимающих диапазон длин волн от 300 до 720 нм! То есть он видит в оптическом, инфракрасном и ультрафиолетовом диапазонах спектра. Просто Хищник их фильма «Хищник» какой-то!

Ротоногие обладают самым большим разнообразием зрительных пигментов среди всех изученных животных. Правда, есть основания полагать, что они плохо различают цвета, их зрение заточено на распознавание длин волн. Ну хотя бы поляризованный свет видят лучше остальных ракообразных. Причем не только линейный, но даже круговой поляризованный свет! Клетки омматидиев преобразуют входящий свет с круговой поляризацией в линейно поляризованный.

В поляризованном свете плоскость колебаний вектора электрического поля меняется со временем предсказуемо, в неполяризованном — беспорядочно. В случае линейной поляризации плоскость не меняется со временем, в случае круговой — поворачивается на 360° за каждый период. Оптимальное поляризационное зрение — способность измерять все аспекты поляризации. У раков-богомолов оно к тому же динамическое, что уникально для животных. «Раки» вращают глазами, чтобы выровнять определенные фоторецепторы относительно угла поляризации линейно поляризованного визуального стимула, тем самым увеличивая контраст между интересующим объектом и его фоном.

Зачем маленькой зверюшке такое сложное зрение? Для обнаружения объектов в рассеянном свете. Рифовые рыбы прекрасно видны на рассеянном и ультрафиолетовом фоне, если смотрящий на них обладает ультрафиолетовым зрением. При этом ультрафиолетовое зрение мало поможет, если смотреть на серебристую рыбу, отражающую свет. Но такая рыба видна, если смотреть чувствительными к поляризованному свету глазами. Такое зрение уместно в ярких, затопленных ультрафиолетом поверхностных водах. Получается, как ни маскируются подводные обитатели, им не укрыться от бдительного ока «богомола».

Раки-богомолы также используют поляризованный свет для коммуникации. Определенные части их тела, участвующие в сигнальном поведении, отражают линейно поляризованный свет и подают друг другу сигналы, невидимые другим морским обитателям.

ArefievPV

  • Новичок
  • *
  • Сообщений: 1185
  • Карма: 0
    • Просмотр профиля
Re: Интересные новости и факты (биология, химия)
« Ответ #204 : 02 Февраля 2023, 18:53:16 »
Это самый редкий минерал на Земле: существует лишь один образец!
https://www.techinsider.ru/science/1578697-eto-samyy-redkiy-mineral-na-zemle-sushchestvuet-lish-odin-obrazec/
Из 6000 идентифицированных минералов Земли есть один уникальный. Ученым он известен по единственному образцу.
Цитировать
Этот образец действительно уникален. Такое соединение создавали в лаборатории, но в природе оно встретилось лишь 1 раз.

Из 6000 минералов, признанных Международной минералогической ассоциацией, многие образуются в результате нескольких геологических процессов, которые приводят к тому, что даже в разных по химическому составу областях под поверхностью земли могут образовываться идентичные минералы. Определенные химические реакции протекают одинаково, где бы вы не находились, поэтому в мире так часто можно обнаружить кварц, плагиоклазы, магнетит и другие минералы.

Самый редкий минерал на Земле

Однако есть один минерал, который уникален на нашей планете благодаря своей природе. Он называется киавтуит. Его образец был найден недалеко от Могока, Мьянма, и был признан Международной минералогической ассоциацией в 2015 году. Почти идентичное синтетическое соединение уже было известно, поэтому, если вы очень хотите его получить, вам не нужно красть единственный образец из Музея естественной истории округа Лос-Анджелес, где он хранится.

Киавтуит имеет прозрачный красновато-оранжевый цвет, а единственный образец весит 1,61 карата (0,3 грамма). Его химическая формула - Bi3+Sb5+O4 со следами тантала. И висмут, и сурьма (Sb — химический символ сурьмы) встречаются не часто, но не являются уникальными металлами. В земной коре больше висмута, чем золота, в то время как сурьмы больше, чем серебра. Кислород — самый распространенный элемент земной коры, поэтому редкость киавтуита должна быть связана с методом его образования, а не с нехваткой образующих его элементов.

Висмут — настолько тяжелый элемент, что плотность киавтуита более чем в восемь раз превышает плотность воды (и вдвое больше плотность рубинов, которые он слегка напоминает), поэтому образец этого минерала меньше, чем можно предположить, если взвесить его в руке. Судя по базе данных минералов, его структура состоит из расположенных шахматном порядке октаэдров Sb5+O6, параллельных ионам Bi. Этот единственный признанный оксид висмута-сурьмы, названный в честь доктора Кьяу Тху, бывшего геолога Янгонского университета.

Образец киавтуита был найден в русле ручья охотниками за сапфиром и одобрен Международной минералогической ассоциацией в 2015 году как новый минерал. Его научное описание было опубликовано в 2017 году.

ArefievPV

  • Новичок
  • *
  • Сообщений: 1185
  • Карма: 0
    • Просмотр профиля
Re: Интересные новости и факты (биология, химия)
« Ответ #205 : 08 Февраля 2023, 11:16:05 »
Социальность способствует эволюции долголетия
https://elementy.ru/novosti_nauki/434066/Sotsialnost_sposobstvuet_evolyutsii_dolgoletiya
Цитировать

Рис. 1. Распределение трех признаков — уровня социальности, массы тела и долголетия — в классе млекопитающих. Показаны данные по 974 видам. В центре — эволюционное дерево. Важнейшие группы обозначены силуэтами зверей. Данные по массе тела и долголетию (максимальной продолжительности жизни) приведены в логарифмическом масштабе. Рисунок из обсуждаемой статьи в Nature Communications
Цитировать
Сравнительный анализ данных по продолжительности жизни и социальному поведению 974 видов млекопитающих подтвердил положительную связь между социальностью и долголетием: со всеми необходимыми поправками получилось, что социальные звери живут дольше одиночек. Эволюционные переходы от короткоживущего состояния к долгоживущему чаще происходят у социальных млекопитающих, чем у одиночек, однако переходы от одиночной жизни к социальности происходят с одинаковой частотой у коротко- и долгоживущих. Это значит, что сопряженная эволюция социальности и долголетия объясняется не тем, что долголетие способствует отбору на социальность, а тем, что социальность способствует отбору на долголетие.
Цитировать
Главный — и очень важный — результат исследования состоит в том, что, во-первых, подтверждено существование положительной эволюционной корреляции между социальностью и долголетием у млекопитающих. Во-вторых, отвергнута гипотеза о том, что эта корреляция объясняется положительным влиянием долголетия на эволюцию социальности: долгоживущие одиночки становятся социальными не чаще, чем короткоживущие одиночки. В-третьих, подтверждена гипотеза о положительном влиянии социальности на эволюцию долголетия: короткоживущие социальные звери гораздо чаще становятся долгожителями, чем короткоживущие одиночки.

ArefievPV

  • Новичок
  • *
  • Сообщений: 1185
  • Карма: 0
    • Просмотр профиля
Re: Интересные новости и факты (биология, химия)
« Ответ #206 : 08 Февраля 2023, 16:51:37 »
Водород назвали важным источником энергии для морских бактерий
https://nplus1.ru/news/2023/02/08/feast-of-burden
Этот газ может способствовать и выживанию, и росту микроорганизмов
Цитировать
Австралийские, новозеландские и австрийские исследователи выяснили, что молекулярный водород служит существенным источником энергии для бактерий из разных морских экосистем. Они также подтвердили важность монооксида углерода для жизнедеятельности этих микроорганизмов. Отчет о работе опубликован в журнале Nature Microbiology.

В последнее десятилетие стали накапливаться данные о том, что следовые газы атмосферы служат важным источником энергии для аэробных бактерий в наземных экосистемах. Среди них особое значение в силу распространенности и энергоемкости имеют молекулярный водород (H2) и монооксид углерода (CO, угарный газ). Микроорганизмы окисляют их с помощью железо-никелевых [NiFe] гидрогеназ групп 1 и 2, а также дегидрогеназы монооксида углерода (CO-дегидрогеназы) формы 1.
Цитировать
С помощью термодинамического моделирования исследователи выяснили, что уровни окисления СО бактериями достаточны для их выживания, но не роста. Водород, напротив, может дать некоторым литогетеротрофным и миксотрофным видам с невысокими запросами энергию для размножения.

Дополнительный анализ массивов данных «Тары» показал, что с ростом глубины вплоть до мезопелагической зоны у бактерий значительно возрастает количество генов аэробных гидрогеназ и СО-дегидрогеназ, а родопсинов, позволяющих получать энергию из света, — резко снижается. То есть с уменьшением освещения эволюционное преимущество получают поглощающие следовые газы литогетеротрофы.

Как пишут авторы работы, полученные результаты вызывают вопрос: водород и CO представляют собой один из наиболее надежных источников энергии в морской воде, почему тогда им пользуется относительно небольшая доля бактерий — значительно меньше, чем в почве?

По мнению исследователей, ограничивающим фактором может быть низкая концентрация железа: гидрогеназам необходимо 12–13 атомов этого элемента на промотор, СО-дегидрогеназам — четыре. Поэтому в поверхностных слоях воды, где света достаточно, для бактерий более выгодны родопсины, которые металлов не содержат.

ArefievPV

  • Новичок
  • *
  • Сообщений: 1185
  • Карма: 0
    • Просмотр профиля
Re: Интересные новости и факты (биология, химия)
« Ответ #207 : 11 Февраля 2023, 11:47:52 »
Биологи открыли новый класс мобильных генетических элементов у бактерий
https://nplus1.ru/news/2023/02/10/tycheposons
Их назвали тихепозонами в честь морской богини удачи Тихе
Цитировать
Микробиологи обнаружили у морских бактерий новый класс мобильных генетических элементов — фрагментов ДНК, способных передаваться от одной бактерии к другой. Эти элементы — которые ученые назвали тихепозонами, в честь древнегреческой богини Тихе, — переносят гены, позволяющие им усваивать полезные метаболиты, а также обеспечивающие им защиту от вирусов. Для этого тихепозоны используют набор генов и молекулярных механизмов, позволяющих им с высокой точностью встраиваться в определенные места генома, не нарушая при этом его целостность. Работа опубликована в журнале Cell.

Долгое время в поле зрения микробиологов находилась группа морских цианобактерий из рода Prochlorococcus с чрезвычайно разнообразным набором генов. Такое разнообразие обычно приписывается активному горизонтальному переносу генов, следов которого у Prochlorococcus обнаружено не было, хотя это распространенный способ обмена генетической информацией между бактериями. Он дает бактериям возможность быстро адаптироваться — полученные в результате горизонтального переноса гены могут наделить бактерии резистенстностью к антибиотикам или дать им способность усваивать полезные метаболиты из окружающей среды.

На данный момент ученым известно множество способов передачи генетических элементов между бактериями (которые из-за подвижности принято называть мобильными генетическими элементами). Однако обнаружить следы известных мобильных генетических элементов в геномах Prochlorococcus ученым до сих пор не удавалось.

Исследователи под руководством Томаса Хакля (Thomas Hackl) и Салли Чисхолм (Sallie W. Chisholm) из Массачусетского технологического института решили разобраться в причинах этого несоответствия. Повторив попытку найти в геномах Prochlorococcus следы известных мобильных генетических элементов — и не найдя их, — ученые стали детально анализировать геномы отдельных бактерий.

В результате они нашли участок генома, совпадающий на 99 процентов у двух бактерий из разных филогенетических групп Prochlorococcus, — что служит указателем того, что между этими бактериями произошел горизонтальный перенос генов. Проанализировав этот геномный участок, исследователи обнаружили в нем ген, кодирующий сериновую рекомбиназу (фермент, отвечающий за интеграцию фрагмента ДНК в геном), а также гены, кодирующие транскрипционный регулятор, хеликазу и факторы репликации, отдаленно напоминающие факторы, встречающиеся в других мобильных генетических элементах. Затем ученые стали искать гомологичные последовательности в геномах других бактерий Procholorococcus — и нашли 937 участков, содержащих схожую интегразу вместе с другими генами.

Эти результаты дали авторам повод предположить, что перед ними новая группа ранее неизвестных мобильных генетических элементов. Чтобы подтвердить свою гипотезу, ученые исследовали эволюционное родство генов, входящих в мобильные генетические элементы Procholorococcus. Для этого они использовали все известные последовательности генов, схожих по функционалу с генами Procholorococcus, которые имеются в генетических базах данных, и построили кластеры родства на основе схожести нуклеотидных последовательностей.

Кластерный анализ показал, что мобильные генетические элементы Procholorococcus кардинально отличаются от других известных, что служит еще одним подтверждением тому, что мобильные генетические элементы Procholorococcus составляют отдельный класс. Ученые назвали элементы, входящие в эту группу, тихепозонами — в честь древнегреческой богини удачи Тихе, дочери Океана.

Особое внимание ученые уделили анализу особенностей рекомбиназы тихепозонов, так как эти белки этого семейства значительно различаются между разными видами мобильных генетических элементов. Особенность рекомбиназы тихепозонов — высокая точность, с которой она встраивает фрагмент ДНК в геном, тогда как другие рекомбиназы встраивают фрагменты ДНК неспецифично в случайный участок генома. Кроме того, в отличие от других рекомбиназ, рекомбиназа тихепозонов не нарушает нормальную работу участка генома, куда она встраивает ДНК.

После этого ученые проанализировали гены, которые входят в состав тихепозонов. Оказалось, что они содержат множество метаболически полезных генов: в состав многих тихепозонов входят целые кластеры генов, позволяющие им усваивать натрий, фосфор или железо — которые особенно важны для жизнедеятельности бактерий в океане.

Некоторые тихепозоны также содержат гены, кодирующие вирусные структурные белки и белки, необходимые им для сборки капсида. Бактерии используют этот механизм для защиты от вирусов — при попадании в клетку, вирус активирует эти гены, и их белковые продукты мешают ему нормально функционировать и размножаться.

Наконец, ученые исследовали способы, с помощью которых бактерии обмениваются тихепозонами друг с другом. Первым делом ученые проверили наличие тихепозонов в вирусах, обитающих в океане. Проанализировав метагеномы морских вирусов, они обнаружили множество сателлитных тихепозонов — то есть тихепозонов, не входящих в геном вируса, но находящихся вместе с ним в вирусном капсиде и попадающих в клетку одновременно с вирусным геномом. Кроме того, исследователи обнаружили множество различных тихепозонов во внеклеточных везикулах, с помощью которых они могут попадать в бактерии-реципиенты.

Таким образом, авторам статьи удалось выявить и описать новый класс мобильных генетических элементов. Тихепозоны содержат множество полезных генов, позволяющих бактериям усваивать метаболиты и защищаться от вирусов, а также — в отличие от большинства других мобильных генетических элементов — они способны с высокой точностью встраиваться в геном клетки-реципиента, не нарушая его корректную работу.

Мы уже рассказывали про горизонтальный перенос генов — и про то, какую пользу он оказывает различным организмам. Так, обмен мобильными генетическими элементами между кишечными бактериями матери и ребенка помог детям лучше усваивать грудное молоко, а салату «айсберг» помог сформировать кочаны.

P.S. Ссылки на информацию, о которой упоминается в заметке:

Материнские кишечные бактерии поделились генами с микробиомом детей
https://nplus1.ru/news/2022/12/27/Mom-microbe-genes
Возможно, этот горизонтальный перенос генов помогает детям усваивать грудное молоко

Транспозон на седьмой хромосоме помог салату «айсберг» сформировать кочаны
https://nplus1.ru/news/2020/12/14/iceberg-lettuce

И ещё в дополнение ссылка:

Поверх барьеров
https://nplus1.ru/material/2019/01/28/pass-me-gene-please
Что такое горизонтальный перенос генов и насколько он распространен

ArefievPV

  • Новичок
  • *
  • Сообщений: 1185
  • Карма: 0
    • Просмотр профиля
Re: Интересные новости и факты (биология, химия)
« Ответ #208 : 13 Февраля 2023, 11:12:39 »
Ушастый ёж
https://elementy.ru/kartinka_dnya/1694/Ushastyy_ezh
Цитировать

На фото — ушастый еж (Hemiechinus auritus), житель сухих степей, полупустынь и пустынь. Выдающиеся уши позволяют зверьку охлаждаться. Его живот покрыт пушистым мехом, спина — иглами, хвостик маленький, поэтому избавляться от излишков тепла приходится через уши.

Житель средней полосы обычно при слове «еж» представляет себе обыкновенного, или европейского ежа (Erinaceus europaeus). Обыкновенные ежи передвигаются медленно и с достоинством, их защищает массивный иглистый покров, за которым и лапы-то не всегда разглядишь. В случае опасности они предпочитают свернуться и затаиться. У ушастых ежей совершенно другая тактика. У них длинные ноги, а из-под иглистого панциря проглядывает мех на животе. Когда вы попытаетесь их поймать, они удирают, а сворачиваются только в крайнем случае. И догонять их придется бегом.

Днем ушастые ежи отдыхают в укрытиях, а по ночам пробегают до девяти километров в поисках добычи, найти которую им помогают тонкое обоняние и острый слух.

Ушастые ежи всеядны, но предпочитают животную пищу — от жуков до змей. Удерживают добычу они острыми передними зубами, превратившимися в подобие клыков хищников. Если появляется возможность, ушастики стараются селиться поближе к человеку и питаться на помойках. Например, под Астраханью ежи живут в пойменном лесу и интенсивно пахнут тухлой рыбой: видимо, по ночам они делят помойки с местными котами.

Ушастые ежи широко распространены: живут в степях Узбекистана, Казахстана, Монголии и Китая, поднимаются в горы на высоту до 1000 метров (Копетдаг и Кавказ), добрались до Африки (Ливия и Египет). В России их можно встретить в низовьях Дона, Приволжских степях, Предкавказье, Северном Прикаспии, в степях на юге Западной Сибири и Тывы.

На севере ареала ушастые ежи залегают на зиму в спячку длительностью до полугода, в норе, которую роют самостоятельно. Весной ежи просыпаются, и начинается гон. В этот период они едят всё, не отказываются от ягод и фруктов. Между самцами возможны драки. Во время спаривания самец подходит к самке сзади, стараясь не травмироваться об ее иглы. За самку помогают «держаться» особые шипы, выступающие из рогового валика на копулятивном органе. Ежиха может спариться с несколькими самцами, и у ежат из одного помета будут разные отцы.

Малыши рождаются через месяц-полтора, и за ними ухаживает только мать. Ежата появляются на свет слепыми. Их спина покрыта белыми мягкими иголочками, которые напоминают толстые длинные волоски, а живот и грудь — совершенно голые, лишенные шерсти. Сначала ежата не умеют сворачиваться.

Мать кормит детенышей молоком в течение месяца, за то время на спине ежат появляются настоящие иглы, на остальных частях тела — шерсть. Ежата учатся сворачиваться, предупредительно «тутукать» и подпрыгивать, когда их пытаются потрогать. К осени ежи набирают жир и ложатся в спячку. И так повторяется год от года. В природе продолжительность жизни ушастых ежей около пяти лет.

Ушастые ежи — активные и общительные звери, ничего удивительного, что их в последнее время стали держать дома. Если же вы хотите увидеть их в природе — они вас ждут в степи.

P.S. Понравилось: предупредительно «тутукать» :ab:

ArefievPV

  • Новичок
  • *
  • Сообщений: 1185
  • Карма: 0
    • Просмотр профиля
Re: Интересные новости и факты (биология, химия)
« Ответ #209 : 15 Февраля 2023, 10:06:28 »
Прометилировали до седьмого колена
https://nplus1.ru/material/2023/02/14/hereditary-epigenetics
Как биологи заставили мышей унаследовать эпигенетические мутации
Цитировать
Очень может быть, что унаследовать от родителей можно не только гены. Но из доказательств у нас — только отдельные истории.

Вот, например: женщина страдает раком кишечника, потому что ген, который отвечает за починку клеточной ДНК, у нее не работает. Но он и не сломан. Последовательность гена правильная — однако на нем висят лишние метильные группы, а на них садятся белки, запрещающие считывание. И ген молчит. У детей этой женщины — точно такой же рак кишечника, и метильные группы на том же самом гене.

Возможно, это значит, что люди передают потомкам не только гены, но и эпигенетические метки — указания, какие из этих генов использовать, а какие нет. А если так, то получится, что наследование у людей выходит за рамки законов Менделя. И придется пересматривать представления о том, как оно устроено: и молекулярным биологам, и врачам, да и обычным людям, которые задумываются о том, какие риски они могут передать собственным детям.

Цитировать
Что это за метки такие

Эпигенетические метки бывают двух типов:

  • На самой нити ДНК. Это небольшие метильные группы. Они обычно висят на цитозинах (особенно если после них в цепочке идет гуанин). Эта метка не влияет на сам текст гена и на форму двойной спирали.
  • На гистонах, то есть белках, на которые накручена ДНК. Эти метки бывают более разнообразными: среди них и метильные группы, и ацетильные, и даже небольшие белки — убиквитины.

И те, и другие метки нужны для того, чтобы регулировать скрученность областей ДНК и считывание информации. Метки на самой ДНК привлекают к себе белки, которые развешивают метки на гистонах. Метки на гистонах делают упаковку ДНК более рыхлой (то есть информация легко доступна) или более плотной (тогда подобраться к гену сложнее).

При этом две системы меток взаимосвязаны: метки на гистонах тоже могут привлекать метилтрансферазы, которые будут развешивать метильные метки.
Оба типа меток служат сигналом для белков, которые запускают транскрипцию: в зависимости от эпигенетической информации (то есть набора меток на самом гене или рядом с ним) ген либо считывается, либо молчит.

Но для начала нужно доказать, что эпигенетическое сходство родителей и детей — это закономерность, а не совпадение. И что метильные метки, которые появились у двух детей женщины с раком кишечника, перешли к ним по наследству от матери, а не возникли у всех троих независимо — по каким-то внешним или внутренним причинам.

Метка по наследству

У лабораторных животных ученые тоже встречали что-то, похожее на эпигенетическое наследование. Например: обычных мышей откармливают, вызывая ожирение. Потом забирают у них половые клетки, получившиеся эмбрионы пересаживают здоровым суррогатным матерям — и рождается мышонок с избыточным весом.

Откуда у него взялся этот вес? Дело явно не в самих генах — потому что его родители были обычными мышами, пока их не начали откармливать. Если бы мышонка вынашивала собственная мать, то можно было бы предположить, что ее ожирение повлияло на плод за время беременности, — но использование суррогатной матери делает и этот аргумент нерабочим.

Поэтому исследователи предполагают, что дело в эпигенетике: за время откармливания клетки мышей (в том числе и половые) навесили какие-то лишние метки на свою ДНК — и эти метки перешли по наследству к мышатам. Но в таких работах, как правило, речь не идет о конкретном механизме — только о факте. С объяснением которого все сложно.

Заполнить этот пробел взялись биологи под руководством Хуана Карлоса Исписуа Бельмонте (Juan Carlos Izpisúa Belmonte) из Института Солка. Мы уже рассказывали о том, как Бельмонте решает задачи на стыке молекулярной биологии и эмбриологии. Так, например, он руководил проектом по созданию химерных зародышей обезьяны и человека. А потом выращивал мышиных зародышей из одной клетки — и тем самым фактически придумал еще один метод клонирования (об этом в материале «Здравствуй, гхола!»). На этот раз группа Бельмонте задалась целью воспроизвести эпигенетическое наследование в эксперименте.

Вот как был устроен эксперимент:

1. Ученым нужен был участок в геноме, где метильных меток обычно не бывает: чтобы гарантировать, что любая метка на этом месте — искусственная. В качестве такого участка они выбрали CpG-островки — длинные последовательности из цитозина и гуанина. Такие участки часто бывают в регуляторных областях, то есть тех, которые отвечают за работу того или иного гена. И в клетках они обычно не метилированы.

2. Нужны гены, по работе которых можно будет заметить эффект от наследования метильных меток. Бельмонте и коллеги выбрали два: Ankrd26 и Ldlr, оба связаны с ожирением. Что бывает с нокаутными по ним мышами — то есть теми, у которых эти гены вырезаны, — хорошо известно. Без Ankrd26 начинается ожирение, без Ldlr растет уровень холестерина в крови. Соответственно, если навесить метильные метки на CpG-островок перед каким-то из этих генов, он замолчит — и эффект должен быть таким же, как если бы ген вырезали целиком.

3. Нужен способ точечно навесить метки на конкретный островок. Для этого ученые встроили посреди островков кусочек ДНК совсем другой последовательности. Она ничего конкретного не кодирует, но, что важнее, не несет повторов CG — а это привлекает клеточные белки, которые вешают на такие последовательности метильные группы. Забитый метильными группами островок будет неактивен — а поскольку он управляет активностью соседнего гена, умолкнет и тот. Что, собственно, исследователи и проверили: в мышиных клетках, которым досталась такая вставка в геном, целевые островки были метилированы, а подконтрольные им гены не работали.

После этого ученые вырезали бессмысленную вставку из генома обратно — и посмотрели, что происходит в клетках с метилированием CpG-островков. Но когда последовательность мышиной ДНК вернулась к своей норме, лишние метки на островках остались, а следующие за ними гены не работали — то есть появилась эпигенетическая мутация.

Дальше ученые проверили, как эти метки поведут себя в организме мышей. Для этого они взяли культуру эмбриональных стволовых клеток и внесли в них эпигенетические мутации перед генами Ankrd26 или Ldlr, врезав и вырезав «липучку» для метильных групп в соседние с ними CpG-островки. Причем взяли за основу клетки от мыши темного цвета. А затем ввели эти клетки в зародыши мышей белого цвета. В результате на свет родились несколько гибридов, некоторые полностью темные — то есть в них отредактированные клетки составили большую часть в зародыше.

В клетках этих гибридов были почти полностью метилированы CpG-островки перед целевыми генами. На месте были и соответствующие симптомы: например, темные мыши, у которых должен был быть выключен ген Ankrd26, выросли заметно толще своих контрольных сородичей.

Осталось проверить, что эти искусственные эпигенетические метки наследуются. И мышей начали размножать: черных химер скрестили с обычными белыми мышами. В первом поколении многие мышата унаследовали по одной копии гена Ankrd26 от черного родителя — и перед этой копией был точно такой же почти полностью метилированный островок. Эти животные не страдали ожирением, поскольку от второго родителя, белого и не отредактированного, им достался рабочий ген с неметилированным островком. Но само метилирование никуда не делось: оно передалось и внукам химер (тем из них, кому досталась дедовская хромосома), и правнукам. Только в четвертом поколении количество метильных групп на островке перед Ankrd26 стало снижаться.

В аналогичном эксперименте с геном Ldlr лишние метильные метки тоже передавались по наследству — и их не становилось меньше аж до шестого поколения мышей.

Эти результаты уже сложно считать случайностью. Проще признать, что мыши действительно унаследовали эпигенетические метки своих предков. Но здесь возникает еще одна проблема — совершенно непонятно, как это происходит.

Так быть не должно

Ни у кого не возникло бы вопросов, если бы речь шла о бактериях, растениях или червях, — у них эпигенетическое наследование находили уже не раз. Но жизненный цикл млекопитающих и их половых клеток специально устроен таким образом, чтобы этого не допустить.

Клетки взрослого организма имеют свою специализацию: в нервной ткани живут нейроны, в мышце — миоциты, в глазу — палочки и колбочки. Но когда-то в своей стволовой молодости они, естественно, были совершенно одинаковыми универсалами. Просто по мере обретения специализации клетки навешивают себе метильные группы на не нужные им гены — и тем самым делают их недоступными для считывания. Поэтому для клеток каждой специальности характерен свой набор эпигенетических меток.

У сперматозоидов и яйцеклеток тоже есть специализация — они половые. Чтобы в результате их союза получить эмбриональные клетки, из которых можно дальше строить новый организм, все эти метки нужно стереть. Поэтому после оплодотворения в зиготе начинается первая волна репрограммирования: клетка снимает с доставшихся ей генов метки, которые делали из ее родителей сперматозоид и яйцеклетку. У мышей эта волна заканчивается к седьмому дню развития. С этого момента зародыш — tabula rasa, и сам дальше решает, кем ему (в смысле, его клеткам) быть.

Так метильные группы снова начинают появляться в геноме эмбриональных клеток. В каких-то участках их ставят всегда: например, там, где сидят ретротранспозоны, — потому что важно их вовремя заблокировать. Другие метки появляются во время дифференцировки, когда клетки зародыша выясняют, кому быть плацентой, кому — нервной системой, а кому — кишкой.

Но где-то в районе девятого дня развития в зародыше мыши появляется особенная группа клеток — предшественники половых клеток, которым предстоит поселиться в яичках или яичниках и дать начало сперматозоидам и яйцеклеткам. Свою карьеру они начинают с того, что снова стирают метильные группы по всей длине своего генома. И лишь после второй волны репрограммирования начинают развешивать метки заново — и копят их до следующего оплодотворения.

Получается, что по дороге от родителей к мышонку искусственная эпигенетическая метка переживает по меньшей мере одну волну репрограммирования (а если речь о половых клетках отпрыска, то две). И там, где все прочие метки стираются, она почему-то удерживается на своем месте.

Нечистый лист

Чтобы выяснить, как это возможно, Бельмонте вернулся к своим экспериментальным мышам. И посмотрел, что происходит с искусственными метками в обычных (соматических) клетках зародыша, в предшественниках половых клеток и в получившихся из них половых клетках.

Оказалось, что судьба метильной разметки может складываться двумя путями.

Первый ученые увидели на примере зародышей с выключенным геном Ankrd26. До оплодотворения искусственные метки в половых клетках родителя-химеры покрывали почти 70 процентов CpG-островка. После оплодотворения их должна была стереть первая волна репрограммирования — но большинство остались на месте. Потом их стало чуть больше, а после второй волны — чуть меньше. То есть метки оказались очень стойкими: они вообще проигнорировали первую волну и чуть-чуть поддались второй. Но и то, потом быстро восстановили свою численность.

Второй вариант развития событий сложился у меток, которые выключали ген Ldlr (и еще одна из линий, которой выключали Ankrd26). В этих экспериментах метилирование цели было неполным — метки покрывали не больше половины нужного CpG-островка. Их судьба оказалась другой: вторая волна репрограммирования смыла их полностью. Они не появились в яйцеклетках и сперматозоидах у детей отредактированных родителей, но после того, как те встретились и зачали внуков, метки возникли снова — как будто из ниоткуда.

Получается, что, хотя большинство эпигенетических меток стираются подчистую, искусственные метки могут пережить сразу две волны репрограммирования (причем некоторые даже никуда не деваются, а другие возникают на прежнем месте). Значит, эти выжившие должны обладать какими-то особенными свойствами, и пока совершенно неясно, какими.

В еще одном контрольном эксперименте (о котором авторы работы упоминают вскользь, не вдаваясь в подробности) ученые навесили искусственные эпигенетические метки на те же места напрямую. То есть не встраивали и не вырезали ничего из мышиного генома, а просто с помощью фермента пришили метильные группы к оригинальной ДНК. И такие метки оказались нестойкими — они потерялись еще в процессе деления мышиных клеток в культуре.

Судя по всему, тот метод, который исследователи использовали для навешивания лишних меток, пробуждает в клетке какие-то дополнительные механизмы, которые помогают эти метки поддерживать. Причем в некоторых случаях получаются просто очень стабильные метки, которые даже не сотрешь до конца, а в некоторых — возникает стабильная память о метке. Вокруг метилированного островка образуется нечто, способное сохранить эту память на много дней вперед — с первых дней зародышевого развития мыши и до первых дней после зачатия ее потомков — и заставить клеточные ферменты вернуть эту метку на место.

Как выглядит эта память на молекулярном уровне, ученые сказать не берутся. Можно, конечно, предположить, что это мог бы быть какой-то комплекс белков или видоизмененные гистоны или особенная упаковка нитей ДНК — но тогда придется объяснить, как они сами выдерживают репрограммирование и почему не теряются по дороге. Так или иначе, вопрос об эпигенетическом наследовании после работы Бельмонте становится не яснее, а еще более запутанным — на сцене возникла чья-то тень, и ее обладателя нам еще только предстоит найти.

 

Сообщения